Mire jó a GMO 19. – A rák

gmorak00.jpgEzernyi különböző módon próbálták már gyógyítani az egyes daganatos megbetegedéseket, a legfurcsább ötleteket is kipróbálták már, hátha működnek. W. B. Coley már 1910 -ben felvetette, hogy a szilárd daganatok belseje oxigénhiányos, anaerob környezet, így meg lehetne próbálni obligát anaerob, azaz kizárólag oxigén hiányában szaporodó baktériumokat juttatni oda, amelyek elszaporodva elpusztítanák a daganatsejteket, ám az oxigénnel jól ellátott egészséges szöveteket nem bántanák. Sajnos az utóbbi száz évben nem vezettek eredményre ezek a próbálkozások, így ez a kezelés sokáig megmaradt őrült ötletnek.

Egy kattintás ide a folytatáshoz….

GMO párbeszéd (remélem sorozat lesz…)

gm-crops-online-C-2.jpg

Felkérést kaptunk, hogy véleményezzünk egy blogbejegyzést, aminek nagyon örültem, hiszen ez talán valódi párbeszéd kezdetét jelentheti, ami a legjobban hiányzik a GMO vitából. Az “Így nevelj szuperhernyót” a Dinamó blogon jelent meg. Tulajdonképpen két jelenséggel foglalkozik, az első, hogy öt éve megjelentek a Cry3Bb1 Bacillus thuringiensis toxinra ellenálló kukoricabogarak, a második pedig egyes brazil gazdák és a Monsanto közt zajló per. Menjünk szép sorban.

Egy kattintás ide a folytatáshoz….

Mire jó a GMO? 18. – Az elhízás

koverseg01.jpgA fejlett világ egyik legelterjedtebb egészségügyi gondja a túlsúly, ennek következtében az elhízás megelőzése keményen kutatott terület, mert az nyilván megvalósíthatatlan, hogy kevesebbet együnk. A kutatás egyik iránya a bélben élő mikróbák vizsgálata, ezek egyensúlya is nagyban befolyásolja a testsúly alakulását. Kézenfekvő a következtetés, ha meg tudnánk változtatni a belünkben élő szervezeteket, azzal befolyásolhatnánk a súlyunkat is.

Egy kattintás ide a folytatáshoz….

Mire jó a GMO? 17. – A ricinusolaj

ricinus01.jpgA ricinus igazi haszonnövény, a magjaiból sajtolt olaj tartalmazza a ricinsavat, egy zsírsavat, amiből évente három-négyszázezer tonnát fogyaszt az ipar, élelmiszerekben, kenőcsökben, szappanokban, festékekben, műanyagokban találkozhatunk vele. Ráadásul a ricinus elég jól termő növény, meglehetősen sok olaj nyerhető ki belőle, a ricinusolaj pedig keresett termék a világpiacon, elég magas az ára is. Ha ilyen csodálatos növény, miért nem termelik többen? Két aprócska gond van vele, egyrészt a ricinus egy ricin nevű, fehérjetermészetű mérget termel, amit belélegezve a halálos adagja (LD50) 22 mikrogramm testsúlykilogrammonként, ami annyit jelent, hogy egy felnőtt embert két milligramm is megölhet, illetve e mellett különböző allergéneket termel, amik idegrendszeri károsodásokat okozhatnak. (Szájon át fogyasztva a ricin kevésbé mérgező, úgy már testsúlykilogrammonként egy milligramm az LD50 értéke. ) Ennek következtében az olaj sajtolása után maradó pogácsák is halálosan mérgezőek, így veszélyes hulladékként kell őket kezelni, nem etethetőek fel állatokkal, mint a többi olajnövényünké. Mivel ricinustermelést leginkább szegény országokban folytatnak, Indiában, Brazíliában, Kínában, ezeken a helyeken kézzel szüretelik a termést, bizony komoly egészségkárosodások is előfordulnak a munkások közt.

Ellenben ezekre a gondokra viszonylag egyszerű megoldások is rendelkezésre állnak. Francia kutatók a torkánál ragadták meg a kérdést: Miért kell nekünk az erősen mérgező és durva allergén ricinusnövényt termeszteni, ha igazából csak egyetlen zsírsav kell belőle? Fogtak egy Yarrowia lipolytica nevű élesztőt, ami eleve nagy mennyiségű zsírsavat termel, csak éppen nem ricinsavat. Fogták és a ricinsavat előállító enzimeket a gomba genomjába juttatták. Mint az első ábrán látható, elképesztő mennyiségű különböző transzgént próbáltak ki a szerzők, mire sikerrel jártak, nem kicsinyeskedtek: A ricinus mellett az egyetlen ismert ricinsavforrás a Claviceps purpurea nevű gomba, magyar nevén anyarozs, így a biztonság kedvéért a gombából származó oleát hidroxiláz enzimeket is kipróbálták, hátha jobban működnek. Nem megleő módon végül a gomba enzimek működtek jobban. Mindezek mellett a Y. lipolytica genomjából eltávolítottak egy csomó gént, amelyek olyan fehérjéket kódoltak, amelyek a zsírsavak lebontásában vesznek részt, így növelték meg a gomba kitermelését. A végén sikerült elérniük, hogy a gombájuk által termelt zsírsavak 43% -át tegye ki a ricinsav.

A ricinsav fontos ipari nyersanyag, ellenben a két ismert forrása közül egyik problémásabb, mint a másik. Ellenben a ricinsavat előállító enzimeket kódoló gének könnyen más, egyszerűbben kezelhető élőlényekbe juttathatók, így a nehézségek megkerülhetők. Mármint ha engedélyezzük génmódosított élőlények felhasználását.


Beopoulos, A., Verbeke, J., Bordes, F., Guicherd, M., Bressy, M., Marty, A., & Nicaud, J. M. (2014). Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica. Applied microbiology and biotechnology, 98(1), 251-262.

A GM-termények környezeti hatásai

gmokornyezt01.jpgTermészetes, hogy környezetvédelmi kérdések is felmerülnek, ha génmódosításra terelődik a szó, de kérdés, hogy valójában milyen hatást gyakorolnak a célszervezeteken kívüli élőlényekre? Nyilván a legegyszerűbb ezt megmérni, erre is akad jó pár cikk, ma egy viszonylag frissebbel kezdeném, érdekessége, hogy nagyrészt magyar kutatók munkája, a kísérleteket is Budapest mellett végezték.

Egy kattintás ide a folytatáshoz….

Mire jó a GMO 16. – A burgonyavész

krumpli01.jpgA gazdaszervezetek és az élősködőik folyamatos evolúciós versenyben állnak. Az élősködő egyre hatékonyabban fertőzi a gazdát, a gazda pedig egyre hatékonyabban pusztítja az élősködőjét. Ebben a versenyben nyilván különböző egyensúlyi állapotok állhatnak be, ha éppen a gazdában alakul ki egy új, hatékony védőrendszer, akkor egészen addig mentes maradhat az élősködőjétől, amíg az valahogyan nem hatástalanítja a védelmét. Ha ez sikerül, egy darabig megint az élősködő kerül előnybe, majd újrakezdődik a körforgás. Ilyen rendszer például a krumpli és a Phytophora infestans nevű élősködője, a P. infestans különböző effektormolekulákat termel, amelyekkel a krumpli immunválaszát gátolja, a gazda genom pedig különböző R géneket tartalmaz, amelyek termékei felismerik az élősködő által termelt molekulákat, így adnak ellene immunválaszt. Ez a verseny elég régóta tart már, amikor megszekvenálták egy krumplitörzs és az élősködőjének a genomját, négyszázharmincnyolc R gént találtak a krumpliban és ötszázhatvanhárom effektormolekulát kódoló gént a P. infestansban.

Egy kattintás ide a folytatáshoz….

Mire jó a GMO? 15 – Olaj fotoszintetizáló baktériumokból

biodiezel.jpgA bioüzemanyaggyártás legnagyobb hátránya nyilván az, hogy alapvetően olyan nyersanyagokból dolgozik, amelyket mi emberek meg is tudnánk enni, vagy legalább néhány malacot felhizlalnánk rajta, így a bioüzemanyag gyártás az élelmiszerellátással verseng. Meg lehet oldani a dolgot zsírsavakat termelő algákkal is, ám ez esetben elég nehéz hozzájutni a végtermékhez, mivel először be kell darálni a szárított algát, így az így nyert biodízel olaj költségének 70-80% -át viszi el a feltárás. Ugyan ismertek olyan rendszerek, ahol E. coli baktériumokkal termeltettek szabad zsírsavakat, de azok növekedéséhez meg ugye cukor szükséges, ugyanaz a gond velük, mint a bioetanollal. A mai cikk szerzői Xinyao Liu és munkatársai úgy érzik, átvágták a gordiuszi csomót: Génmódosított kékmoszatokkal termeltettek szabad zsírsavakat.

Az alapötlet onnan jött, hogy a Cyanobacteriumok ugyan sok zsírsavat termelnek, ám ezeket nem juttatják a környezetükbe, így alapesetben ezekből sem lehetne gazdaságosabban kivonni, mint a már használt rendszerekből. Viszont a már korábban leírt E. coli rendszerek mintájára rávehetőek, hogy zsírsavakat juttassanak a környezetükbe, amelyeknek az előállításához szükséges energiát napfényből nyerjék, a szükséges szenet pedig a légkörben található szén-dioxidból. Az elkészült törzset viccesen Sun Devilnek, vagyis Napördögnek keresztelték, az első ábrán ennek az elkészülte látható. Az biztos hogy dolgoztak vele, mert jó pár helyen módosítani kellett a törz genomját, mire összeállt az olajtermelő kékalga. A törzs által termelt biomassza 13% -át teszik ki a szabad zsírsavak, ezek láthatóak fehér habként a második ábra bal oldalán és kis gömböcskékként a jobb oldali mikroszkópos képen. Ezek kitermelésben annyit jelentenek, hogy a legjobb termelő törzsük literenként kétszáz milligramm szabad zsírsavat termelt. Ez az érték nyilván elég alacsony, a cikk nem is tartalmaz számításokat, ami alapján meg lehetne becsülni, mégis mennyibe kerül egy adag ilyen olaj, nyilván a megoldás a lényeg benne, hogy génmódosított élőlények egészen újszerű termékek előállítására is képesek, ezzel megkerülhetőek egész iparágakat béklyózó biológiai szükségszerűségek is.

biodiezel02.jpg

 

Liu, X., Sheng, J., & Curtiss III, R. (2011). Fatty acid production in genetically modified cyanobacteria. Proceedings of the National Academy of Sciences, 108(17), 6899-6904.

Mire jó a GMO? – 14. Fehérjetermelés selyemhernyóban

selyemhernyo.jpgÁltalában ha rekombináns fehérjetermelésről esik szó, mindenki baktériumokban, élesztőkben, sejtvonalakban gondolkodik, de ezeknél sokkal kevésbé ismert rendszerek is léteznek, a saját előnyeikkel. Az alapprobléma mindenütt ugyanaz, egy csomó gyógyszerként vagy ipari adalékként használható fehérjét ismerünk, azonban ezek megtermeltetése általában elég drága. A ma ismertetett rendszer ezen próbálna segíteni, egy rovar alapú expressziós rendszerrel.

 

A selyemhernyó elég régen háziasított állat, eddig is fehérjetermelésre használták, mivel a selyem maga fehérjetermészetű, a szál háromnegyedét a vízben nem oldódó rostos fehérjemag alkotja, a negyedét viszont a szálat borító ragacsos szericin fehérjék. Ezek a szállal ellentétben vízben oldhatóak, így egyáltalán nem őrültség a szericintermelő mirigyekben termeltetni rekombináns fehérjéket, amelyek így a szelyemszál bevonatába kerülnek, majd arról egyszerűen lemoshatóak.

Egy kattintás ide a folytatáshoz….

Mire jó a GMO? 13. – A madárinfluenza

csirke influenza.jpgA különböző influenzavírusokról mindenki hallott már, néhány évente tömeges pánikot okoz egy-egy újabb törzs, ami éppen gazdaszervezetek között mozog. Ritkábban szoktuk hozzátenni, hogy egy keményebb járvány a haszonállatokat is megritkíthatja, viszonylag nagy gazdasági károkat okozva. Nyilván a haszonállatok, csirkék, kacsák, vagy akár malacok immunizálása nem költséghatékony, mert az influenzavírusok változékonysága miatt eddig senkinek sem sikerült általános influenza elleni védőoltást készítenie. Viszont ahogy John Lyall és munkatársainak mai cikke is mutatja, nem csak oltással előzhető meg az influenzafertőzés, hanem bizony influenzának ellenálló génmódosított jószágokat is készíthetünk, akik onnantól ingyen védettek a fertőzéstől.

Egy viszonylag rövid génkazettát juttattak a csirke genomba, amely egy olyan RNS molekulát kódol, amelyhez erősen kötődik az influenzavírus polimeráz enzime, ami így zavarja a vírus szaporodását. Ezt ők D5 decoy vagyis D5 csali konstruktnak nevezték el. Mivel a vírus genomnak ez a szakasza rendkívül konzervált, ezért ez az egyetlen konstrukt nagyon sok influenzatörzs ellen véd. Ezek után egyszerűen csirkéket fertőztek madárinfluenzával és nézték, mutatkozik -e valamilyen különbség a transzgénikus és a hagyományos csirkék halálozása között. Tíz csirkét fertőztek közvetlenül nagy adag H5N1 HPAI vírussal, majd egy nap után ezeket tíz másik csirke közé eresztették, ezek lettek a közvetve fertőzöttek. A közvetlenül fertőzött transzgénikus és kontroll csirkék is mind elpusztultak 2-4 nap alatt, ebben nem láttak különbséget, ellenben a közéjük kevert közvetett fertőzöttek túlélésében már látszott különbség a két csoport közt, a kontrollcsoportban hét csirka psuztult el, a transzgénikus csirkék közül azonban csak kettő. Még egy kísérletet végeztek, itt tíz csirkét fertőztek közvetlenül, majd ötöt-ötöt tizenkét-tizenkét transzgénikus vagy nem-transzgénikus csirke közé kevertek és figyelték a túlélést. Meglepő módon a közvetlenül fertőzött csirkék mind elpusztultak, a közvetve fertőzöttek közül a nem-transzgénikus csirkék közül tíz pusztult el, a transzgénikusak közül csak öt.

Őszintén szólva nagyon csodálkozok, hogy ez a cikk a Science-ben jelenhetett meg, elvégre mintha valami harmatgyenge védelmet jelentene a módosítás, de korántsem olyan átütő erejűt, mint ami várható lenne. Valószínűleg az az oka, hogy ez a csapda-konstrukt igen előremutató megoldásnak tűnik, ugyanis ahhoz, hogy ennek ellenálló vírus jöjjön létre, egyszerre meg kellene változnia a vírus polimerázának és az összes génjének is, ami nyilván nagyon alacsony gyakoriságú esemény. Kár hogy úgy tűnik ebben a változatában alacsony hatékonysággal működik. Mindenesetre az elgondolás helyessége már ezekből a kísérletekből is látszik, a haszonállatokat viszonylag egyszerűen és olcsón meg lehetne védeni a vírusfertőzésektől, génmódosítással, ezzel a saját fertőződésünk esélyét is jelentősen csökkenthetnénk.


Lyall, J., Irvine, R. M., Sherman, A., McKinley, T. J., Núñez, A., Purdie, A., … & Tiley, L. (2011). Suppression of avian influenza transmission in genetically modified chickens. Science, 331(6014), 223-226.

Mire jó a GMO? 12. – Az omega-3 zsírsavak

halolaj.jpgAz omega-3 hosszú láncú, többszörösen telítetlen zsírsavak az utóbbi időben jöttek divatba, a legtöbb helyen az örök élet zálogaként tekintenek rájuk, ennek következtében a kereslet is hirtelen megugrott irántuk. Viszont tengeri halakból vonják ki őket, így a halászat és a vízikultúra óriási terhet ró a környezetre. Nyilván sokkal egyszerűbb lenne, ha más forrásból is nyerhetnénk omega-3 zsírsavakat, nem kéne hozzá túlhalászni az utolsó néhány még meglévő tengeri élőhelyet. Nyilván az új forrásnak fenntarthatónak és bővíthetőnek kellene lennie, különben semmivel sem leszünk előrébb vele. Noemi Ruiz-Lopez és munkatársai úgy gondolják, hogy ők találtak egy ilyen alternatív forrást: A sárgarepce magvas gomborka (Camelina sativa) genomba juttatták az omega-3 zsírsavak szintéziséhez szükséges enzimeket, így a növény termeli meg a szükséges zsírsavakat.

Egy kattintás ide a folytatáshoz….