“Dobj egy dNTP-t sebzésre!” – Véletlenszámok DNS-sel

Mire jó egy véletlenszám?

A véletlenszámok generálása mindig is a hétköznapok szerves részét képezte. Már az ókori Egyiptomból és Mezopotámiából (i.e. 3000 környéke) is maradtak fenn olyan népszerű társasok, ahol a fej-vagy-írás a játék központi mechanizmusa. Sokkal később már volt életművész, aki a fizikai Nobel-díjat a makao nevű kártyajátékon nyerte el Noah Bertinus professzortól. Az én gimnazista éveimnek pedig legizgalmasabb pillanatai közé sorolható, mikor d10-esekkel (10 oldalú dobókocka) egész orkhordákat tettünk el láb alól, ha a sors nekünk kedvezett. Akkor még ciki volt szerepjátékozni, aztán jött a Trónok Harca és a Stranger Things…

Manapság azonban a kocka és érme már nem elég hatékony. Számítógépes szimulációk során például másodpercenként több ezer random számra is szükség lehet. De talán ennél is fontosabb ipar napjainkban a kriptográfia (meg vannak véletlensevendéglátóegység kaszinók). Legyen szó banki átutalásról vagy bármilyen kommunikációról a digitális térben, a bizalmas információk titkosítása hatalmas nagyságrendben igényel véletlenszámokat.

Pszeudo és valódi random számok

Léteznek úgynevezett pszeudo (nem valódi) random számok. Könnyen lehet ilyeneket generálni egyszerűbb matematikai szabályokkal is, amik egy kezdeti értékből kiindulva randomnak tűnő számsorozatokat eredményeznek. A legtöbb területen (modellezés, számítógépes játékok) ezek is megállják a helyük. Azonban még a komolyabb pszeudorandom generátorok is rejtenek magukban hátrányokat. Legnagyobb veszélyük, hogy determinisztikusak, azaz ha valaki ismeri az algoritmust és generátor belső állapotát, akkor meg tudja jósolni, hogy az egyes lépésekben milyen számok keletkeznek. Virtuális lottósorsolásokon hasonló manőverrel már nyert valaki körülbelül 7,5 milliárd forintnak megfelelő dollárt (majd 25 év letöltendőt), illetve az Amerikai Nemzetbiztonsági Ügynökséggel (NSA) kapcsolatban is felmerült, hogy egyes titkosításra használt számgenerátorokba ilyen kiskapukat épít.

Pont ezért olyan izgalmas piac a valódi random számok területe. Ezek a számgenerátorok szoftveres és algoritmikus megoldások helyett ténylegesen véletlenszerű fizikai folyamatok valós idejű mérésére építkeznek. Az eképpen keletkezett adatok teljesen jósolhatatlanok, így biztonságosabbak is kriptográfiai szempontból. Ilyen véletlen forrása lehet, a teljesség igénye nélkül, a radioaktív bomlás, atmoszférikus rádiózajok, áramkörökben fellépő fluktuációk és egyéb kvantummechanikai események (ezek közül a kedvencem a kaotikus félvezető lézer, ami úgy hangzik, mint a hatodik Halálcsillagra tervezett szuperfegyver).

D&D: DNS és Digitalizációja

Egy ilyen, valódi véletlenszám-generátorokkal kapcsolatos felvetés, hogy kémiai folyamatokat molekuláris szinten figyeljünk meg, és ezt használjuk ki valamilyen módon. Itt jön a képbe a DNS, mint egy lehetséges rendszer, melyet mostanság sikerült megvalósítani Meisernek és munkatársainak.

Hogy zajlik ez gyakorlatban? Vegyük e nukleinsav építőköveit, a négyféle dNTP-t (leánykori nevükön dezoxiribonukleotid-trifoszfátokat): dATP, dTTP, dCTP és dGTP. Ezek elegyéből indulunk ki egy véletlenszerű DNS szintézise során. Nem egy meglévő DNS-t másolunk; minden egyes polimerizációs lépés olyan, mintha dobnánk egy négyoldalú dobókockával: először mondjuk egy G-t, aztán A-t, T-t, újra T-t satöbbi. Így jutunk egy random DNS-szálhoz (1. ábra). Sőt, nem is kell nekünk szenvedni a laborban! Random DNS-ek már kereskedelmi forgalomban is kaphatóak, ha valaki szeretne egyet otthonra. Pont olyan izgalmas a tartásuk, mint egy cserép petúniának.

1. ábra: Random DNS-ek szintézise (forrás: Meiser és mtsai., 2020)

Ami ezek után még hátravan, az a generált random DNS-ek beolvasása (szekvenálás) és random számokká alakítása. A szekvenálás manapság elterjedt újgenerációs technológiákkal könnyen és gyorsan megoldható. A DNS-ek random számmá való átdolgozása sem kihívás. A digitális világ amúgy is bináris értékekkel operál. Rendeljünk mindegyik bázishoz nullát vagy egyet a következőképpen: A→0, C→0, T→1, G→1. Így lesz mondjuk a GATTACA szekvenciából 1011000, mint random bitek sorozata.

Az olvasóban felmerülhet, hogy megduplázhatnánk a hatékonyságot, ha kettesével osztanánk ki a biteket, pl.: A→00, C→01, T→10, G→11. Ennek hiánya a jelenlegi technológia egyik gyermekbetegségének, pontosabban annak megoldásának tudható be. A random DNS szintézis ugyanis nem teljesen random, G és T sokkal gyakrabban épül be a jelenlegi eljárások során. Ez azt is jelenti, hogy bizonyos véletlenszámok nagyobb valószínűséggel ütnék fel a fejüket. A probléma más számgenerátorok esetében is ismert, megoldására létezik is algoritmus, melyet von Neumann korrektor-nak hívnak (Neumann János után). Ez a korrekció azonban nem működne, ha kettesével generálnánk a biteket.

Ami ennél is fájdalmasabb, hogy a korrektor is további veszteségekkel dolgozik, az eredeti nemannyiravéletlen bittengerből így csak negyedannyi igazánvalódi random számot lehet kitermelni. Összességében tehát nyolcszoros veszteségről beszélhetünk. Mégis, az ilyen csiszolatlanságai ellenére is elfogadhatóan teljesít a DNS ha más generátorokkal vetjük össze (1. táblázat). Különösen igaz ez akkor, ha azt az ismertebb valódi véletlenszám technológiák teljesítményéhez mérjük.

RendszerTípusProdukciós ráta (MB/s)
Mersenne Twister algoritmuspszeudo15000
Kaotikus félvezető lézer (Reidler és mtsai., 2009)valódi1560
Intel® DRNGhibrid (valódi + pszeudo)800
DNS (Meiser és mtsai., 2020)valódi0,3
Atmoszférikus zörej (Random.org)valódi0,0015
Radioaktív bomlás (HotBits)valódi0,0001
1. táblázat: DNS és más véletlenszám-generátorok teljesítménye, Meiser és mtsai. (2020) nyomán, módosítva

A DNS-alapú rendszer komoly előnye a könnyű hordozhatósága: egy 1ml-nyi DNS körülbelül 1019 bit információt tud raktározni (ez merevlemeznek sem utolsó, de a mi esetünkben ez mind értékes random bit lehetne). Szekvenátorokból is vannak már egész kompakt típusok. A rendszer jelenlegi korlátját és fő költségét is ez utóbbi, a szekvenálás jelenti, ami viszont továbbra is egy fejlődő terület. Javulásra tehát még számíthatunk a későbbiekben, s így semmi jövőbeli akadálya nincs annak, hogy a holnap társasjátékait már sufnituning dNTP random számokkal játszhassuk.

(A borítókép a Wikipedia oldaláról származik)


Meiser, L.C., Koch, J., Antkowiak, P.L. et al. DNA synthesis for true random number generation. Nat Commun 11, 5869 (2020). https://doi.org/10.1038/s41467-020-19757-y

Reidler, I., Aviad, Y., Rosenbluh, M. & Kanter, I. Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett.103, 1–4 (2009). https://doi.org/10.1103/PhysRevLett.103.024102

Zhirnov, V., Zadegan, R., Sandhu, G. et al. Nucleic acid memory. Nature Mater 15, 366–370 (2016). https://doi.org/10.1038/nmat4594

Az ember, aki túl gyorsan öregedett

240_werner_mosaic_moonassi_final1.jpg

Nobuaki Nagasima Werner-szindrómában szenved, amitől a teste extrém gyorsan öregedik. Erika Hayasaki írása jól bemutatja, hogy ennek a betegségnek a tanulmányozása sokmindent elárul génjeink működéséről. Még az is előfordulhat, hogy a Werner-szindróma megértése segíthet megoldást találni az öregedés lelassítására – vagy akár megállítására is.

Egy kattintás ide a folytatáshoz….

Milyen is a kromoszómákról alkotott képünk 2017-ben?

chromemt.png

A szó etimológiája alapján azt feltételeznénk (egyébként részben helyesen), hogy a kromoszómák, vagyis “festődő testek” a sejtek talán legjobban megjeleníthető komponenseit képezik. És kétségtelen, hogy számos korabeli eljárással nagyon szépen láthatóvá lehetett tenni már egészen régen az örökítőanyag ezen nagy, diszkrét komponenseit, különösen osztódások során. Ugyanakkor a strukturális információ, ami ezen sejtkomponensekről így beszerezhető volt, viszonylag korlátozottnak bizonyult. Mégpedig azért (is), mert az a mérettartomány, ahol igazán megfigyelhető lenne, hogy miképp csomagolódik a DNS, kívül esik a fénymikroszkópok nagyítási képességein és az a helyzet, hogy a korábbi eljárásokkal a megfelelő felbontást már biztosító elektronmikroszkópokkal a kromoszómák nem festődtek.

Ez pedig azt a helyzetet eredményezte, hogy mindazt, amit a kromatin szerkezetéről, a sejtben levő DNS-lánc feltekeredéséről gondoltunk, elsősorban indirekt bizonyítékokon alapult. 

Egy kattintás ide a folytatáshoz….

Így fertőzhetné meg a DNS a számítógéped

lead_960.png

A környező világ vírusai újabb és újabb gazdaszervezetek megfertőzésével képesek önmaguk sokszorosítására és a fennmaradásra, így nem véletlen, hogy a hasonló logikával terjedő, biztonsági réseket kihasználó számítógépes programok megjelenésekor, valamikor az 1980-as évek elején nem is kellett sokat gondolkozni, hogy a malware ezen fajtáját hogyan nevezzék el.  

Azóta a számítógépes vírusok a mindennapjaink részévé váltak, olyannyira, hogy a DNS, mint adattároló koncepciójának terjedésével, természetesen már arra is volt példa, hogy számítógépes vírusok kódját fordították le speciális algoritmusokkal, és ültették DNS-be. Ilyenkor persze a DNS-visszaolvasása után még a dekódolás lépése, illetve a program elindítása is elválaszt attól, hogy a gépünk a vírus áldozatává váljon, ami azért kellő biztonságot ad, ilyenfajta adatátviteli kísérletekhez.

De vajon lenne-e arra lehetőség, hogy a DNS olvasása már önmagában is spontán olyan folyamatokat indítson el, amivel valaki átveheti uralmát a szekvenátorhoz kapcsolt számítógépes rendszer felett? A látszólag abszurd kérdésre most elegáns és praktikus választ adtak a University of Washington kutatói.

dna_shellcode.png

Így történhet egy DNS-alapú stack-overflow támadás a szekvenátorra kapcsolt számítógép ellen. Forrás: University of Washington

A lényegi eleme a folyamatnak, hogy DNS-szekvenátorokból kiömlő információt feldolgozó és elemző programok írásakor egyáltalán nem lebegett senkinek a szeme előtt, hogy itt valaha, valaki majd ezen keresztül megpróbálna betörni a számítógépre, éppen ezért viszonylag sok olyan biztonsági rés van ezekben a scriptekben, amelyek megfelelő technikával kihasználhatók.

Az egyik legelemibb ilyen támadási felület, hogy ezek a programok kifejezetten sérülékenyek veremtúlcsordulásos (stack overflow) támadásokkal szemben, mert születésükkor a technika még viszonylag rövid DNS-szekvenciák (néhány tucattól max. 200 bázispárig) létrehozását tudta biztosítani és ilyen típusú információk feldolgozására készültek. Márpedig az ilyen esetekben, ha adott hosszúságú információra számítanak csak a programozók, a memóriában egy fix méretű tömböt foglalnak le számára, de ennek révén egyben biztonsági rizikót hoznak létre. Ugyanis, ha ilyen esetekben a vártnál nagyobb információcsomag érkezik, akkor a lefoglalt tömbön túl a memória egyébb részei is átíródhatnak – bizonyos esetekben azok is, amelyek már a program futásához kellenek. Megfelelően meghatározva, hogy mi legyen a bevitt információcsomag így a számítógép egy teljesen más program futtatására vehető rá, pusztán az adatbevitel révén.

Jelen esetben, az egyszerűbb kivitel kedvéért a kutatók egy extra veremtúlcsordulásos biztonsági rést tettek a DNS szekvenciát beolvasó és feldolgozó egyik programba (vagyis itt nem a már létező, potenciális biztonsági rések valamelyikét használták ki), majd megalkották azt a vírus-scriptet, aminek a bevitelével (elméletileg) átvehetik az irányítást (ebben az esetben, kicsit tisztelgésként a terület klasszikusai előtt, a Smashing The Stack For Fun And Profit kódot futtaták le).

A (ki)használt fqzcomp nevű program bitenként tárolja a DNS négy bázispárjának információit (az A-t 00-ként, a C-t 01-ként, a G-t 10-ként és a T-t 11-ként), ami lehetővé teszi, hogy ha a megtevezett rövid vírust binárisra lefordították, gyorsan át lehessen fordítani DNS-szekvenciára. Végül így egy 176 bázispár hosszú szekvenciát kaptak, amit kevesebb, mint 100 dollárért le is szállított nekik az egyik DNS-szintetizálásra szakosodott cég.  

A szintetikus DNS-t betéve a szekvenátorba, kijött a szekvencia, aminek a feldolgozásakor a (módosított) fqzcomp annak rendje és módja szerint átadta az irányítást a számítógép felett.

Amiért izgalmas mindez, mert ez az első bizonyítéka annak, hogy mindez nem sci-fi, hanem létező biztonsági rés. Még ha jelen esetben az egyszerűség kedvéért módosítani is kellett egy programot, látható, hogy ez a fajta támadás fizikailag megvalósítható. És mivel az újabb szekvenátorok egyre hosszabb és hosszabb szekvenciákat tudnak kiköpni magukból, csak idő kérdése, hogy a nem módosított programok is szembenézzenek a veremtúlcsordulás problémájával. Most még van idő erre felkészülni és nem igen kétséges, hogy innentől kezdve ez is szempont lesz.

Persze felmerül a kérdés, hogy miért akarna valaki így betörni egy számítógépre? Két eshetőség adja magát szinte azonnal: vagy, hogy például tetthely színhelyéről származó minták beszennyezésével meggátolják, hogy az inkrimináló bizonyíték megszülessen (a számítógépre behatolva meg tudják hamisítani a szekvenciaadatokat), vagy, hogy egy nagyobb adatbázishoz hozzáférve, valaki másnak a személyes genomadatait megszerezhessék. A genomszekvencia értelmeszerűen szenzitív, személyes információ kellene legyen, és illetéktelen kezekbe kerülve akár zsarolásra is felhasználható, vagy gyógyszerérzékenységi profilok meghatározásával akár fizikai támadások megtervezésére is jó lehet.

Épp ezért bármennyire is szórakoztató maga a projekt, a veszély, amire felhívja a figyelmet, nagyon is valós. Így talán itt lesz annak is az ideje, hogy a DNS szintetizálásra szakosodott cégek annak az ellenőrzésén túl, hogy nem valami halálos patogén létrehozásához akarja a megrendelő a szekvenciát használni, azt is megnézik, hogy adott esetben nem egy DNS-alapú számítógépvírust hoznak létre. 

(via The Atlantic)

[A poszt eredetileg a ScienceMeetup blogjában jelent meg.]

A DNS a jövő adathordozója?

dna-storage-51.jpg

A felhő korában, amikor szinte minden levelünk, képünk, dokumentumunk távoli, misztikus szervereken lakik, természetesnek tűnne, hogy valóban, bizonyítottan ez a fajta adattárolás legyen az általunk ismert legmegbízhatóbb. 

A valóságban azonban nem ez, mégpedig azon praktikus szempontból, hogy a felhő-alapú adattárolás egyszerűen nem létezik elég régen ahhoz, hogy ilyen jellegű kijelentést tehessünk. Ahogy a flash memória esetében is maximum évtizedes adatmegőrzési képességet tudunk igazolni, a mágnesszalagoknál több évtizedest, a bakelitlemezeknél pedig durván évszázadost. De akkor mi a komplex adatok tárolásának bizonyítottan legtartósabb módja? A papír (és rokonai) esetében is párezer éves a legrégebbi ismert (töredékes) példány, és ha még régebbre akarunk menni, akkor már a kőtáblák, vagy még jobban visszapörgetve az idő kerekét, barlangrajzok korába jutunk.

A spanyol El Castillo barlang kézlenyomatai és nonfiguratív ábrái közel 40 ezer évvel ezelőtt születtek, és ha elfogadjuk ezek információhordozó-jellegét, akkor ésszerűnek tűnhet ezeket a korabeli ábrákat, pontosabban az őket tartalmazó felületeket tekinteni a legősibb információhordozónak.

A valóság azonban az, hogy nagyságrendileg is régebbiek azok a komplex információk, amelyeket a mai technológiával megbízhatóan meg tudunk határozni, és ezekben az esetekben a bizonyítottan jól működő információhordozó közel sem egy sziklafal szürkeségű élettelen anyag, hanem maga a DNS: közel 430 ezer éves emberi csontokból is tudtunk már használható DNS-szekvenciát kiszedni, és az abszolút rekord jelenleg közel 700 ezer éves csontokból származó DNS szekvenálása. (Megjegyzendő, hogy ezeknél régebbi leletekről is szólnak néha cikkek, de azokat a szekvenciákat a kutatók többsége inkább modern szennyeződésnek tulajdonítja, mint valódi ősi DNS-nek.)

A DNS-ben levő információra a „tervrajz” és „program” analógiát szoktuk használni, amelyek egyike sem tökéletes körbeírása az örökítőanyagnak, de annyira mindenesetre pontosak, hogy jól láthassuk, valóban komplex információhordozó a dezoxiribonukleinsav. 

Egy kattintás ide a folytatáshoz….

DNS-hibajavítás és Nobel díj

lindahl-modrich-sancar-nobel-prize-in-chemistry.jpg Minden egyes ember csak szüleihez képest 60 új mutációt hordoz, amelyek a szülők ivarsejtjeiben, azok érése, kialakulása során jelentek meg. Hogy egy kicsit jobban számszerűsítsük, ez azt jelenti, hogy mindössze a jelenleg élő kb. 7 milliárd emberben, közvetlen elődeikhez képest, száz milliárd új mutáció jelent meg a fogantatás pillanatában, vagyis a kb. 3 milliárd bázispárnyi emberi genom minden egyes nukleotidja átlagban több tucatszor mutálódhatott csak ebben az evolúciós szempontból szűk időablakban. És mindez elenyésző ahhoz képest, ami testi sejtjeinkben történik, ahol az ivarvonalt érintő mutációk sokszorosa alakul ki az életünk során (egyes becslések szerint egy hatvan éves ember belében levő sejtek összességében minden egyes genomi pozícióban hordoznak valamilyen mutációt). A mutációk egy része egyszerűen a sejt DNS-másoló molekuláinak tévedésére vezethetők vissza, sokan azonban környezetei tényezők (UV-sugárzás, dohányfüst, stb.) számlájára írhatók.

Ennek az óriási mutáció-dömpingnek azonban csak töredéke hasznos a szervezet számára, a mutációk jelentős része nem oszt, nem szoroz (szakzsargonban neutrális), és a hasznosnál még mindig sokkal-sokkal több kifejezetten káros mutáció alakul ki, ami vagy működésképtelen és elpusztuló sejtet eredményez, vagy , ami még rosszabb, a nyakló nélküli proliferáció, vagyis a rák előszobáját jelentik

Így aztán nem meglepő, hogy a legtöbb sejtben szofisztikált molekuláris mechanizmusok alakultak ki, hogy a mutációk mennyiségét a lehető minimumon tartsák. Különböző mutáció-fajták némileg különböző felismerő és javító-rendszereket igényelnek és a 2015-ös kémiai Nobel díjat ezeknek a molekuláris komplexeknek a feltárásáért ítélte oda a bizottság.

Egy kattintás ide a folytatáshoz….

A GMO veszélyei 2. – GENERA

GENERA-Safety.jpgÁllandóan felvetődik kérdésként, hogy mégis mennyi vizsgálatot végeztek génmódosított élőlények hatásairól és a laikusok hol tájékozódhatnak ezekről a vizsgálatokról? Voltak, akik tettek is az ügyért és nemrég elindult a GENERA (Genetic Engineering Risk Atlas) adatbázis, amely bárki számára szabadon hozzáférhető, kereshető és amelyben megpróbálják egy helyen összegyűjteni a kérdésről íródott közleményeket. Egy adatbázisról nagyon nehéz általánosságokban szólni, ezt a szerzők is tudják, úgyhogy a jelenlegi béta állapotú adatbázisból pár száz véletlenszerűen kiválasztott cikket elemeztek az itt látható két képen. Az első azt mutatja, kik fizették a vizsgálatokat, valószínűleg GMO elleneseknek meglepő módon a hatásvizsgálatok kb. felét kormányok fizetik, bizony, a génmódosított élőlények hatásvizsgálatait független kutatók is elvégezték, nem meglepő módon ők sem találták nyomát az annyit emlegetett veszélyeknek.

Egy kattintás ide a folytatáshoz….

Mire jó a GMO 16. – A burgonyavész

krumpli01.jpgA gazdaszervezetek és az élősködőik folyamatos evolúciós versenyben állnak. Az élősködő egyre hatékonyabban fertőzi a gazdát, a gazda pedig egyre hatékonyabban pusztítja az élősködőjét. Ebben a versenyben nyilván különböző egyensúlyi állapotok állhatnak be, ha éppen a gazdában alakul ki egy új, hatékony védőrendszer, akkor egészen addig mentes maradhat az élősködőjétől, amíg az valahogyan nem hatástalanítja a védelmét. Ha ez sikerül, egy darabig megint az élősködő kerül előnybe, majd újrakezdődik a körforgás. Ilyen rendszer például a krumpli és a Phytophora infestans nevű élősködője, a P. infestans különböző effektormolekulákat termel, amelyekkel a krumpli immunválaszát gátolja, a gazda genom pedig különböző R géneket tartalmaz, amelyek termékei felismerik az élősködő által termelt molekulákat, így adnak ellene immunválaszt. Ez a verseny elég régóta tart már, amikor megszekvenálták egy krumplitörzs és az élősködőjének a genomját, négyszázharmincnyolc R gént találtak a krumpliban és ötszázhatvanhárom effektormolekulát kódoló gént a P. infestansban.

Egy kattintás ide a folytatáshoz….

Mire jó a GMO 8. – A tűzelhalás

tuzelhalas.jpgAzt hiszem az almát senkinek sem kell bemutatnom, itthon annyit termelünk belőle. Viszont különböző betegségek fenyegetik az almafáinkat, az egyik legkomolyabb veszélyt a tűzelhalás nevű fertőzés jelenti, amelyet egy Erwinia amylovora nevű baktérium okoz, amely egész almaültetvényeket tarolhat le, ha nem figyelnek rá. Maga a betegség elég régóta ismert, Észak-Amerikában őshonos, itt már az ezerhétszázas évek végén leírták a megjelenését, de itt Európában viszonylag friss jelenség, 1955 -ben észlelték először Angliában, Magyarországra pedig 1995 -ben érkezett meg.

A kórokozó elleni védekezés egyáltalán nem egyszerű dolog, eredetileg antibiotikumokkal permetezték az almafákat, de ez manapság tilos. Léteznek fágkészítmények, amelyek az E. amylovorát elpusztító vírusokat tartalmaznak, illetve különböző baktérium és gombakészítmények, amelyek a fákra permetezve megakadályozzák az E. amylovora elszaporodását. Nyilván a kézenfekvő megoldás annyi lenne, hogy a fertőzésnek ellenálló almafákat ültetnének a gazdák, így szépen el is tűnne a fertőzés. Igen ám, de az alma nemesítés nem megy olyan egyszerűen, mint gondoljuk, éppen ezért nagyon jó modellje egy csomó haszonnövényünknek.

Egy kattintás ide a folytatáshoz….

Vissza a vitrinekből

A Magyarországon is méltán népszerű Gerald Durrell emlékét ápoló Durrell Trust tavasszal egy ötletes reklámkampányba kedzett, melynek központi eleme egy megkapó animációs filmecske, “A magányos dodó” (“The Lonely Dodo”) volt. A kampány üzenete tulajdonképpen rendkívül egyszerű és egyezik a tröszt kulcsfilozófiájával: a dodón, ezen az ember által kiírtott, hatalmas madáron már sajnos nem lehet segíteni, de megfelelő odafigyeléssel elkerülhető, hogy más állatok is erre a szomorú sorsra jussanak, s akarva-akaratlan végleg a történelemkönyvek lapjaira száműzzük őket.

A tröszt félelme egyáltalán nem alaptalan, hiszen az ember jelenlétével és terjeszkedésével fémjelzett, újabban csak “antropocénként” aposztrofált, napjainkig tartó földtörténeti kor ritkán látott kihalási hullámot hozott magával. A fajok kihalása (épp úgy, ahogy keletkezésük) persze egy viszonylag természetes dolog – a valaha élt fajok 99%-a mára már nincs velünk -, ugyanakkor korántsem mindegy a kipusztulás üteme. Márpedig az emberi tevékenység következtében ez az ütem ritkán látott méreteket öltött, sokak szerint az élővilág történetének hatodik nagy kihalási hullámának lehetünk tanúi (a korábbiak péládul meteorbecsapódás vagy hasonló kataklizmikus események nyomán jelentkeztek). És mint a dodó, a moa, az amerikai és eurázsiai megafauna sorsa tanúsítja, az emberi tevékenység ilyen irányú hatása még csak nem is újkeletű: az Óceániát kolonizáló polinézek évente átlagosan két madárfajt pusztítottak ki.

De vajon tényleg végleg-e a “végleg”, vagy van-e, lehet-e visszaút fajok számára a természettudományi múzeumok dohos tárolószekrényeiből, az “egyszer volt” panoptikumból? Jóvá tudjuk-e tenni, amit elődeink elrontottak és láthatunk-e valaha újból mamutot, bucardót vagy vándorgalambot? Lehet-e újból a tasmán fauna része az erszényes farkas? A korábban csak a sci-fi irodalom lapjain népszerű ötlet az elmúlt évek biotechnológiai robbanása után ma már nem tűnik annyira valóságtól elrugaszkodottnak.

Egy kattintás ide a folytatáshoz….