Szemeseknek áll a világ

jellyfish_eye.jpg 

A szemevolúció mindig is hálás téma és egyike azon eseteknek, amikor a kreacionisták ignoranciából származó érvét (miszerint a komplex szem nem alakulhatott ki lépésenként) remekül lehet felhasználni pont annak a szemléltetésére, amit cáfolni szerettek volna.

Szem, pontosabban fényérzékelő szerv sokszor kialakult az evolúció során. Elég csak a klasszikus, gerinces szem mellett a rovarok összetett szemére és a lábasfejűek más logikán működő kameraszemére gondolni, hogy belássuk ezek bizonyosan egymástól függetlenül jöttek lére – és ha egy csoporton belül jobban szétnézünk, akkor gyakran az is látható, hogy több, különböző logikájú és fejlettségű szem is megjelenhet, ami szintén azt sugallja, hogy a szem-szerű szervek evolúciója, ha már vannak fényérzékeny sejtek, viszonylag logikus kimenet.

(Az alábbi összefoglaló ábrán az összetett szemeket oválisok, az egyetlen kamrával rendelkezőket pedig négyzetek jelölik. A színkódok elkülönítik az egyszerű, árnyékok érzékelésére alkalmas látószerveket (piros), a lencséket használóktól (kék) és a tükröződő felületekkel operálóktól (zöld).) 

eyes.jpg

Akadékoskodók persze felvethetik, hogy ezek a szemek szintén nem jöhetnek egy lépésben létre – de természetesen ilyesmit nem is állít és például a puhatestűek esetében jól láthatók egyes fajokban azok az “átmeneti” struktúrák, amelyeket létezését már a korai, egyszerű számítógépes szimulációk is kiadták.  

mollusc_eyes.jpg

Pár hete a Current Biology-ban jelent meg egy tanulmány, ami az egyik legegyszerűbb felépítésű állatcsoport, a csalánzók esetében nézi meg molekuláris kladisztikát használva, hogy hányszor is alakulhattak ki “szemek”.

Az már az ultrastruktúrájuk alapján is valószínű volt, hogy ennyire különböző látószervek, mint az alábbi ábrán is láthatók (illetve röpke évtizede már írtam a kockamedúza remek szeméről is), egymásból nehezebben származtathatók, mint egy szem-mentes állapotból, de hogy ebben biztosak lehessünk, ahhoz kellett egy nagy pontosságú filogenetikai fa és azon rögtön jobban látszik, hogy sok “szemes” csoport közvetlen rokonságában szinte kizárólag szem nélküliek vannak.

jellyfish_eye_3.jpg

Ez pedig már az egyszerű kladisztika szintjén is azt sugallná, hogy vagy a közös ősnek is volt valami szemre emlékeztető szerve, ami nagyon sokszor elvesződött az evolúció során, vagy többször – konkrétan nyolcszor – kialakult ebben az állatcsoportban is. A cikk szerzői ez utóbbi álláspont mellett teszik le voksukat és ennek alátámasztására megvizsgálják a különböző szemekben fellelhető opszinokat is – ti., ha a szemek újból és újból eltűntek volna, akkor a látószervvel rendelkezől szemében levő opszinok szorosabb rokonságot kellene mutassanak (monofiletikus csoportot alkotnának). De nem ezt látjuk, ami megintcsak azt támasztja alá, hogy a csalánozó szemek sokszor, egymástól függetlenül jöttek létre.

jellyfish_eye_2.jpg

Ami persze nem teljesen véletlen, hiszen még a szemmel nem rendelkező fajok esetében is a bőrben számos fotoreceptív sejt van. Ezeket használta fel aztán az evolúció, hogy a korábban emlegetett szimulációknak megfelelően, újból és újból szemfoltokat, vagy annál is komplexebb struktúrákat hozzon létre.   


Picciani N, Kerlin JR, Sierra N, Swafford AJM, Ramirez MD, et al. (2018) Prolific Origination of Eyes in Cnidaria with Co-option of Non-visual Opsins. Curr Biol 28(15): 2413-2419.e4
Treisman JE (2004) How to make an eye. Development 131(16): 3823-7

Szibériai meglepetés – 3.

denny.png

Az utóbbi évtized egyik legnagyobb embertani meglepetése még 2010-ben született, amikor egyetlen kis darab ujjperc alapján kiderült, hogy az anatómiailag modern ember, aka. Homo sapiens feltűnésével párhuzamosan nem csak egy, hanem legalább két másik ősi embercsoport létezett a világon. A neandervölgyiekről már régóta tudtunk, de ez a szibériai Gyeniszova-barlangból származó ujjperc nem tőlük származott, hanem a tudomány számára egészen addig ismeretlen embercsoporttól.

Egy kattintás ide a folytatáshoz….

Vérünkben (volt) a rovarevés

early_insectivore.png

A Krétában megjelenő ősi méhlepényes emlősök a dinoszauruszok árnyékában húzták meg magukat, a többnyire éjszakai rovarevésre szakosodott niche-ben. Ezen életmódhoz való adaptáció számos olyan genetikai lenyomatot hagyott, amit ma is fellelhetünk az emlősök genomjában. Ilyen például, hogy az emlősök többsége dikromatikus látssal bír, mivel a közös ős az éjszakai életmódhoz való alkalmazkodás során elvesztette opszin génjeinek többségét (s csak jóval később, az emberszabásúakban lesz egy extra génduplikáció, aminek köszönhetően mi már színesben látjuk a posztot és a világot). Egy másik ilyen lenyomat pedig, mint az a napokban a Science Advances-ra kikerült cikkből kiderül, hogy a genomunkban fosszilis formában ott bujkálnak a korabeli rovarevés emlékét őrző, a kemény, kitin-alapú exoszkeletook lebontását segítő kitináz gének “fosszíliái”. 

Egy kattintás ide a folytatáshoz….

Rája lépett

walking_skate.gif

A végtag-evolúció azon kevés dolog egyike, amitől még a legelfoglaltabb pillanataimban is képes vagyok ismét lelkes kezdő blogger lenni. Az meg persze a sokszor méltatlanul elfeledett Darwin nap. A kettő ördögi kombinációjának meg persze ki tudna ellenállni.

A poszt apropója tehát egy gyönyörű végtagevolúciós kutatás, ami – hogy ellőjem az örökzöld bölcsességet – kapásból több kérdést vet fel, mint ahányat megválaszol. A Cell-ben ugyanis egy olyan tanulmány jelent meg, ami egy kisméretű rájafaj, a Leucoraja erinacea mozgását tanulmányozva, nem kevesebbet állít, mint, hogy a négylábú gerincesek végtagjainak beidegzése egy abszolút ősi tulajdonság, aminek anatómiai alapjai még a porcos- és csontos halak szétválását is megelőzik.

Egy kattintás ide a folytatáshoz….

570 millió éves embriók?

ediacara.png

(A következő poszt informálisan továbbra is létező “gyakornokos” lehetőségünkre jött, szerzője pedig Jezsó Bálint.)

A fosszíliák tanusága szerint, a ma ismert soksejtű állati (Metazoa) törzsek közel fele (11 állattörzs) a kambriumi evolúciós robbanásként emlegetett esemény során fejlődött ki. Természetesen nem ezek voltak az állatvilág legősibb képviselői, a kambrium hajnalán bekövetkezett szédületes sebességű filogenezisnek jócskán volt előzménye. 1946-ban, a dél-ausztráliai Ediacara középhegység finomszemcsés, kovaanyagú üledékében olyan lágytestű élőlények lenyomataira bukkantak, amelyek jóval a kambriumi evolúciós bumm előtt éldegéltek a kontinenseket övező sekélytengerek aljzatán. A jó megtartású leletanyagból több mint 60 faj került leírásra, köztük különböző csalánzószerű lényekkel, és szelvényezett testű állatokkal, mint például a Spriggina, ami egyesek szerint a gyűrűsférgek, mások szerint az úgynevezett Panarthropoda csoport (ami ízeltlábúak mellett medveállatkákat és őslégcsöveseket is magába foglal) őse lehetett. Ezek mellett rengeteg olyan maradványt is találtak, amelyeket semmilyen recens metazoa csoporttal nem tudtak megfeleltetni, így az álltalános vélekedés szerint olyan korai állattörzsek képviselőivel van dolgunk, amelyek a kambrium kezdetére kihaltak.

Egy kattintás ide a folytatáshoz….

Tömzsi lábakon – 2.

std_dachshund_600.jpg

Nyolc évvel ezelőtt (jönne, hogy írjam “pár éve”, pedig dehogy pár éve az…) már írtam egyszer egy különleges mutációról, ami egyes kutyafajták esetében (pl. tacskók és bassett houndok) rövid végtagok kialakulását eredményezi. Azért volt különleges, mert nem egyszerűen egy már meglevő gén aminosavsorrendje, vagy szabályozása változott meg, hanem egy génnek egy újabb kópiája keletkezett. Mégpedig nem genomduplikációval, hanem egy reverz transzkriptáz enzim segítségével az eredeti, genomi DNS-ből átíródott (és a splicing során megérett) FGF4 mRNS íródott vissza (immár intronok nélküli) DNS darabbá és integrálódott a genomba a 18. kromoszómán.

Azt gondolnánk, hogy egy ilyen esemény már önmagában is elég különleges, ám pont a napokban arra derült fény, hogy szinte hajszálpontosan ugyanez az esemény még egyszer lejátszódott a kutyák tenyésztése során.

Egy kattintás ide a folytatáshoz….

Milyen is a kromoszómákról alkotott képünk 2017-ben?

chromemt.png

A szó etimológiája alapján azt feltételeznénk (egyébként részben helyesen), hogy a kromoszómák, vagyis “festődő testek” a sejtek talán legjobban megjeleníthető komponenseit képezik. És kétségtelen, hogy számos korabeli eljárással nagyon szépen láthatóvá lehetett tenni már egészen régen az örökítőanyag ezen nagy, diszkrét komponenseit, különösen osztódások során. Ugyanakkor a strukturális információ, ami ezen sejtkomponensekről így beszerezhető volt, viszonylag korlátozottnak bizonyult. Mégpedig azért (is), mert az a mérettartomány, ahol igazán megfigyelhető lenne, hogy miképp csomagolódik a DNS, kívül esik a fénymikroszkópok nagyítási képességein és az a helyzet, hogy a korábbi eljárásokkal a megfelelő felbontást már biztosító elektronmikroszkópokkal a kromoszómák nem festődtek.

Ez pedig azt a helyzetet eredményezte, hogy mindazt, amit a kromatin szerkezetéről, a sejtben levő DNS-lánc feltekeredéséről gondoltunk, elsősorban indirekt bizonyítékokon alapult. 

Egy kattintás ide a folytatáshoz….

Így fertőzhetné meg a DNS a számítógéped

lead_960.png

A környező világ vírusai újabb és újabb gazdaszervezetek megfertőzésével képesek önmaguk sokszorosítására és a fennmaradásra, így nem véletlen, hogy a hasonló logikával terjedő, biztonsági réseket kihasználó számítógépes programok megjelenésekor, valamikor az 1980-as évek elején nem is kellett sokat gondolkozni, hogy a malware ezen fajtáját hogyan nevezzék el.  

Azóta a számítógépes vírusok a mindennapjaink részévé váltak, olyannyira, hogy a DNS, mint adattároló koncepciójának terjedésével, természetesen már arra is volt példa, hogy számítógépes vírusok kódját fordították le speciális algoritmusokkal, és ültették DNS-be. Ilyenkor persze a DNS-visszaolvasása után még a dekódolás lépése, illetve a program elindítása is elválaszt attól, hogy a gépünk a vírus áldozatává váljon, ami azért kellő biztonságot ad, ilyenfajta adatátviteli kísérletekhez.

De vajon lenne-e arra lehetőség, hogy a DNS olvasása már önmagában is spontán olyan folyamatokat indítson el, amivel valaki átveheti uralmát a szekvenátorhoz kapcsolt számítógépes rendszer felett? A látszólag abszurd kérdésre most elegáns és praktikus választ adtak a University of Washington kutatói.

dna_shellcode.png

Így történhet egy DNS-alapú stack-overflow támadás a szekvenátorra kapcsolt számítógép ellen. Forrás: University of Washington

A lényegi eleme a folyamatnak, hogy DNS-szekvenátorokból kiömlő információt feldolgozó és elemző programok írásakor egyáltalán nem lebegett senkinek a szeme előtt, hogy itt valaha, valaki majd ezen keresztül megpróbálna betörni a számítógépre, éppen ezért viszonylag sok olyan biztonsági rés van ezekben a scriptekben, amelyek megfelelő technikával kihasználhatók.

Az egyik legelemibb ilyen támadási felület, hogy ezek a programok kifejezetten sérülékenyek veremtúlcsordulásos (stack overflow) támadásokkal szemben, mert születésükkor a technika még viszonylag rövid DNS-szekvenciák (néhány tucattól max. 200 bázispárig) létrehozását tudta biztosítani és ilyen típusú információk feldolgozására készültek. Márpedig az ilyen esetekben, ha adott hosszúságú információra számítanak csak a programozók, a memóriában egy fix méretű tömböt foglalnak le számára, de ennek révén egyben biztonsági rizikót hoznak létre. Ugyanis, ha ilyen esetekben a vártnál nagyobb információcsomag érkezik, akkor a lefoglalt tömbön túl a memória egyébb részei is átíródhatnak – bizonyos esetekben azok is, amelyek már a program futásához kellenek. Megfelelően meghatározva, hogy mi legyen a bevitt információcsomag így a számítógép egy teljesen más program futtatására vehető rá, pusztán az adatbevitel révén.

Jelen esetben, az egyszerűbb kivitel kedvéért a kutatók egy extra veremtúlcsordulásos biztonsági rést tettek a DNS szekvenciát beolvasó és feldolgozó egyik programba (vagyis itt nem a már létező, potenciális biztonsági rések valamelyikét használták ki), majd megalkották azt a vírus-scriptet, aminek a bevitelével (elméletileg) átvehetik az irányítást (ebben az esetben, kicsit tisztelgésként a terület klasszikusai előtt, a Smashing The Stack For Fun And Profit kódot futtaták le).

A (ki)használt fqzcomp nevű program bitenként tárolja a DNS négy bázispárjának információit (az A-t 00-ként, a C-t 01-ként, a G-t 10-ként és a T-t 11-ként), ami lehetővé teszi, hogy ha a megtevezett rövid vírust binárisra lefordították, gyorsan át lehessen fordítani DNS-szekvenciára. Végül így egy 176 bázispár hosszú szekvenciát kaptak, amit kevesebb, mint 100 dollárért le is szállított nekik az egyik DNS-szintetizálásra szakosodott cég.  

A szintetikus DNS-t betéve a szekvenátorba, kijött a szekvencia, aminek a feldolgozásakor a (módosított) fqzcomp annak rendje és módja szerint átadta az irányítást a számítógép felett.

Amiért izgalmas mindez, mert ez az első bizonyítéka annak, hogy mindez nem sci-fi, hanem létező biztonsági rés. Még ha jelen esetben az egyszerűség kedvéért módosítani is kellett egy programot, látható, hogy ez a fajta támadás fizikailag megvalósítható. És mivel az újabb szekvenátorok egyre hosszabb és hosszabb szekvenciákat tudnak kiköpni magukból, csak idő kérdése, hogy a nem módosított programok is szembenézzenek a veremtúlcsordulás problémájával. Most még van idő erre felkészülni és nem igen kétséges, hogy innentől kezdve ez is szempont lesz.

Persze felmerül a kérdés, hogy miért akarna valaki így betörni egy számítógépre? Két eshetőség adja magát szinte azonnal: vagy, hogy például tetthely színhelyéről származó minták beszennyezésével meggátolják, hogy az inkrimináló bizonyíték megszülessen (a számítógépre behatolva meg tudják hamisítani a szekvenciaadatokat), vagy, hogy egy nagyobb adatbázishoz hozzáférve, valaki másnak a személyes genomadatait megszerezhessék. A genomszekvencia értelmeszerűen szenzitív, személyes információ kellene legyen, és illetéktelen kezekbe kerülve akár zsarolásra is felhasználható, vagy gyógyszerérzékenységi profilok meghatározásával akár fizikai támadások megtervezésére is jó lehet.

Épp ezért bármennyire is szórakoztató maga a projekt, a veszély, amire felhívja a figyelmet, nagyon is valós. Így talán itt lesz annak is az ideje, hogy a DNS szintetizálásra szakosodott cégek annak az ellenőrzésén túl, hogy nem valami halálos patogén létrehozásához akarja a megrendelő a szekvenciát használni, azt is megnézik, hogy adott esetben nem egy DNS-alapú számítógépvírust hoznak létre. 

(via The Atlantic)

[A poszt eredetileg a ScienceMeetup blogjában jelent meg.]

“Ipari melanizmus” tengeri kígyókban

snake_melanism_1.jpg

Ipari szennyeződés és fekete (melanizált) testszín témakörben ugyan a klasszikus példa a pettyesaraszoló volt és marad, de ez nem jelenti azt, hogy más fajokban hasonlóan érdekes – és adott esetben kicsit más logikával működő – adaptációkra ne lenne példa.

Current Biology-ra a napokban felkerült cikkben most egy Óceániában élő tengeri kígyófaj, a Emydocephalus annulatus különböző populációt vizsgálva figyeltek fel arra a kutatók, hogy az ipari-urbánus területek közelében élő kígyók között sokkal-sokkal gyakoribbak a tiszta fekete egyedek, mint az emberi tevékenység áldásos hatásaitól távol élő példányok között. Mivel a pettyesaraszolóval ellentétben a vízben élő kígyók esetében a fekete szín nem segít a rejtőzködésben, felmerült a kérdés, hogy milyen más adaptív előnyt biztosíthat ez a mintázat?

snake_melanism_2.jpg

A válasz a sötét pigemntanyag, a melanin egy másik tulajdonságában rejlik, minden valószínűség szerint, mégpedig abban, hogy az nagyon hatékonyan képes megkötni a nehézfémeket. Márpedig az emberi aktivitáshoz közeli zónákban lényegesen nagyobb az ilyen anyagoknak a koncentrációja, mint máshol, és a tápláléklánc tetején levő, ragadozó kígyókban könnyen felgyűlhetnek ezek a káros anyagok. Ha így van, akkor talán (szólt a feltételezés), több pigment termelésével, illetve a hüllőkre jellemző vedléssel a kígyók egy új mechanizmust fejlesztettek ki arra, hogy a nehézfém fölösleget kiválasszák és eltávolítsák a szervezetükből.

Erre az elméletre egyfajta bizonyítékot egy távoli rokon, a csíkos mintázatú sárgaajkú tengerikígyó (Laticauda sp.) levedlett bőrének vizsgálatával sikerült szolgáltatni. Ezeknek a bőröknek a vizsgálatával fény derült arra, hogy az urbánus zónákban élő egyedek levedlett bőrében sokkal magasabb a különféle nehéz fémek koncentrációja, mint a “vidéki” területeken lakói esetében, illetve a fekete és fehér csíkok külön vizsgálatával az is látható, hogy a sötét csíkok (ahogy azt a nagyobb melanin koncentráció alapján gondolnánk) több nehézfémet tartalmaznak. (A torkolati régiók (“river mouth”) általában egy átmeneti állapotot képviselnek.)

snake_melanism_3.jpg

Azaz adott egy új példa arra, hogy a melanizáció miképpen lehet adaptív egy populáció számára és sajnos ez egyben újabb példa arra is, hogy ezt a fajta trükköt az emberi tevékenység miatt kell bevetnie egy fajnak. Meg persze talán arra is részleges magyarázattal szolgál a dolog, hogy a heavy metal rajongók körében miért népszerű szín a fekete ;-)).


Goiran C, Bustamante P, Shine R (2017) Industrial Melanism in the Seasnake Emydocephalus annulatus. Curr Bio doi: 10.1016/j.cub.2017.06.073