Tücsök és ugróláb

Ha a rovarvilág molekuláris svájcibicskáját keresnénk, az Ubx gén jó eséllyel pályázhatna erre a címre. Szerepe van abban, hogy a rovarok potrohán nem alakulnak ki lábak és szárnyak, de abban is ő a ludas, hogy pl. a muslicák (és házilegyek) hátsó torszelvényén a szárny egy speciális egyensúlyozó szervvé, billérré alakul. De úgy tűnik, ezzel még nem értünk sor végére és időről időre újabb tulajdonságokról derül ki, hogy azokat valamilyen formában az Ubx szabályozza.

Most éppen a hátsó (azaz harmadik torszelvényen (T3) kifejlődő) lábak vannak soron, amelyek szegmensei számos faj esetében hosszabbra nyúlnak mint a többi láb esetében (gondoljunk csak a tücskök és szöcskék esetére).

Egy kattintás ide a folytatáshoz….

Parti egerek – 2.

A külalak (pl. szőrzetszín) változása mindig hálás témája az evolúciót taglaló irományoknak, hiszen az még a leglaikusabb olvasók számára is triviális, hogy mind a ragadozók, mind a prédáik számára nagyon fontos, hogy minnél jobban kerüljék a feltűnést és beleolvadjanak környezetükbe.

Nincs ez másként egy floridai egérfaj, a Peromyscus polionotus esetében sem, ahol a homokos part közelében élő populációk, lényegesen világosabb, homokszínű bundával rendelkeznek, mint a félsziget belsejében elő társaik. A jelleg adaptív voltához nem sok kétség férhet, s mivel sok más emlősfajnál (pl. mamutok) a hasonló adaptív változásokat a melanocortin-1-receptor (mc1r) változásához lehetett kapcsolni, ez esetben is először ezt a gént vizsgálták meg a kutatók.

Normális körülmények között az Mc1R feladata, hogy a melanocortin stimuláló hormon (msh) hatására instruálja a sejteket sötét pigment, azaz eumelanin termelésére. Ha azonban egy olyan mutáció jelenik meg a génben, ami csökkenti az aktivitását, az értelemszerűen világosabb mintázat formájában fog jelentkezni az állat hétköznapjaiban.

Pont egy ilyen mutációra leltek a P. polionotus parti populációiban (P. p. leucocephalus) is, amikor szúrópróbaszerűen megvizsgálták az mc1r gént, de ugyanakkor az is gyanítható volt, hogy a mutáció nem egyedül felelős a világosabb szőrzetért.

Ezért a következő lépésben a Hopi Hoekstra vezette csoport szisztematikusabb vizsgálódásba kezdett. A tüskés pikós posztban már körülírt módszert alkalmazva, keresztezték a part menti világos és a parttól távól élő sötét egérközösségek képviselőit, és azt nézték, hogy a világosabb bunda szín melyik genetikai markerekkel öröklődik együtt (ez ugyanis arra utal, hogy a marker közelében levő génnek szerepe lehet az új jelleg kialakulásában). A lista viszonylag rövid lett, mindössze három gén szerepelt rajta (és egyik sem “új”, olyan szempontból, hogy a laboratóriumi egerekkel végzett kísérletek során, már kapcsolatba hozták a szőrzet pigmentációjával): az első – nem túl meglepő módon – az mc1r, a második egy agouti nevű gén, a harmadik pedig a c-kit receptor (Kit). A vizsgálatok szerint a három közül az első kettőnek van igazán fontos szerepe, így bár a Kit működése sok szempontból érdekes, a továbbiakban hanyagolták.

Az agouti a pigmentációs folyamatokban az Mc1r antagonistájaként működik, azaz hozzá kapcsolódva gátolja a működését – így ahol jelen van nem, vagy csak alig keletkezik sötét pigment. A floridai parti egerek bőrében az agouti kifejeződési szintje mindenhol erőteljesen megemelkedett, s így kombinálódva a kevésbé aktív Mc1r receptorral együttesen “fehérítik ki” a mindkét mutációt hordozó egereket. (Bár, tegyük hozzá, csupán az egyik mutáció birtoklása is világosabb szőrzetet eredményez – az igazán hasznos, “homokszínhez”, azonban mindkettő kell.)

Vagyis a Mexikói öböl bícsein héderező rágcsálók egyszerre jó példái annak, hogy az evolúció és a természetes szelekció egyaránt működhet gének funkcióinak elvesztésével, vagy korlátozásával (lásd mc1r), és új funkciók megjelenésével, vagy már meglevők kiterjesztésével (lásd agouti). Mikor épp miből lehet előnyt kovácsolni.


Steiner CC, Weber JN, Hoekstra HE (2007) Adaptive Variation in Beach Mice Produced by Two Interacting Pigmentation Genes. PLoS Biol 5(9): e219 doi:10.1371/journal.pbio.0050219

Szinapszisok eredete

A (kémiai) szinapszis azon kevés biológiai fogalmak egyike, amely feltehetőleg mindenki számára valamilyen minimum homályos jelentéssel bír. A kifejezés azt a struktúrát takarja, amely két idegsejt (neuron) találkozásánál jön létre, és ahol az egyik (preszinaptikus) neuronból érkező elektromos jel kémiai jellé alakulva a sejtek közötti téren áthatol, majd stimulálja vagy gátolja a másik (posztszinaptikus) sejtet. Ahhoz, hogy a dolog működjön mind két sejt oldalán bonyolult molekuláris komplexekre van szükség: a preszinaptikus partnernél apró kis hólyagocskákban (vezikulákban) levő ingerületátvivő anyagok (neurotranszmitterek), amelyek az elektromos impulzus érkezésekor a sejtközti térbe ürülnek, majd a posztszinaptikus partner megfelelő receptoraihoz kötődve fejtik ki hatásukat. Itt (a “túloldalon”) egy mikroszkópos képeken sötét vonalként megjelenő struktúra kapcsolódik a receptorok sejten belüli részeihez. Ez posztszinaptikus denzitás néven fut a tudományos irodalomban, és mindazon fehérjék gyűjtőneve, amelyek itt elhelyezkedve és együttműködve, a neurotranszmitterek által közvetített jel feldolgozásáért felelősek.

Egy kattintás ide a folytatáshoz….

Szupereb

A kutyák megunhatatlan alanyai a különböző genetikai vizsgálatoknak, hiszen évezredek szorgos tenyésztésével egészen elképesztő formagazdaságot sikerült létrehoznunk körükben. Így aztán legyen a kérdés méret, vagy alkat, biztos, hogy sikerül valami informatívat “kipréselnünk” négylábú barátainkból.

Most épp a whippet (azaz szalonagár) került terítékre. Ezt az agáralkatú kutyát Angliában tenyésztették ki versenyzésre a 17. század magasságában. S bár ma már számos kiállításon a kutya sudár alkatát díjazzák előszeretettel, a verseny-tenyésztők számára a külalak másodlagos, a legfontosabb a sebesség.

Egy kattintás ide a folytatáshoz….

Kiskutya, nagykutya

Amikor világot látott szűk másfél éve a kutya genom már írtam, hogy a kutyatenyésztés tekinthető akár az emberiség egyik legrégebbi és egyben leglátványosabb genetikai kísérletének is. Az elmúlt néhány ezer év alatt létrehozott fajták formagazdasága egészen lenyűgöző, és elsőrangú példája annak, hogy mi mindenre képes a(z ez esetben mesterséges) szelekció.

Egyes kutyafajták olyannyira különböznek egymástól, hogy ha például a csivavát és a dán dogot csak csontjaikról ismernénk, igen jó eséllyel két különböző, bár rokon fajnak tartanánk. A két eb között a méretkülönbség óriási, s ezzel el is érkeztünk a mai poszt kérdéséhez: mi lehet ennek az eltérésnek a genetikai oka?

A válaszhoz lehetne alkalmazni a tüskéspikók esetében is alkalmazott technikát, (keresztezzük a szóbanforgó tulajdonság két szélsőségét, majd az unokáikban elkezdjük a méretet és az egyes kromoszómális markereket együtt vizsgálni, hogy beazonosítsuk a tulajdonságért felelős DNS szakaszt), de egy palotapincsi és bernáthegyi keresztezése azért akadályokba ütközik (főleg a pincsi oldalán). Ilyen esetben érdemesebb szerényebb célokat kitűzni kezdetben, hiszen, mint azt látni fogjuk, az így szerzett tudás is remekül hasznosítható lesz.

A kutatók ez esetben kezdetben a portugál vízikutyára öszpontosítottak, azon a nem elhanyagolható okból kifolyólag, hogy ez a fajta igen nagy méretbeli változatosságot mutat. A kis- és nagyméretű vízikutyák genetikai markereit összevetve, a 15. kromoszóma egy rövidke szakasza tűnt ki: az itt elhelyezkedő markerek egy jól meghatározható csoportja minden egyes kisebb ebben jelen volt, de gyakran hiányzott a nagyobb méretűekből. A szóbanforgó szakasz egy növekedési faktort, az insulin-like growth factor 1-t (IGF1) kódol, s ez a gén egyben igen logikus jelölt is a méretbeli különbségek okozására: az IGF1 nemműködő verzióját hordozó egerek (és emberek) lényegesen kisebbek mint normális társaik. A vízikutyák esetében azonban a “kis” allél is működőképes IGF1 fehérjét hoz létre, csak lényegesen kevesebbet, mint a “nagy”, magyarán egy tipikus szabályozó-régió mutációval állunk szemben.

Persze kérdés, hogy mennyiben alkalmazható az egyetlen fajtából szerzett tudás a többiekre. Lehet, hogy a lecsökkent IGF1 szint más, aprónövésű fajtákban is fontos, de az is lehet, hogy azok egyéb okok miatt maradnak kicsik. A kérdést eldöntendő 143 kutyafajtát genotipizált végig a kutatócsoport és az eredmények szerint, a portugál vízikutyában talált “kis” IGF1 allél jelenléte ill. hiánya igen-igen jól korrelál a testmérettel. Jól, de nem tökéletesen (pl. a rottweilerek nagy többségében ez az allél van és mégsem kicsik), éppen ezért helytelen lenne az IGF1-t kinevezni A “méret-génnek”. Mint minden komplex, sok árnyalattal jellemezhető tulajdonság, a testméret is sok géntől függ (azaz poligénes). Az azonban bizonyosnak tűnik, hogy ez közül az egyik kiemelkedően fontos, az IGF1.


Sutter, NB, Bustamante, CD, Chase, K, Gray, MM, Zhao, K, et al. (2007) A single IGF1 allele is a major determinant of small size in dogs. Science 316: 112-115.

Ízeltlábú test-evolúció – 2.

A lábak számának csökkenése még nem minden, hiszen rovarok evolúciója során az egyik legjelentősebb lépés a szárnyak kialakulása és ezzel együtt a repülés megjelenése volt. Utóbbinak fontos szerepe volt abban, hogy a későbbiekben az állatvilág egyik legsikeresebb és legnépesebb állatcsoporttá váltak. Hogy miként alakultak ki a szárnyak, még nem tudjuk pontosan, de a fosszilizálódott ősi rovarok alakja, valamint a környezetünkben előforduló kortársaikból származó genetikai információi jó kiindulási pontot kínál arra, hogy egy hipotézist állítsuk fel erre vonatkozólag.

A legősibb rovaroknak, amelyek leginkább a ma is élő pikkelykéhez hasonlítottak, egyáltalán nem volt szárnya. Emiatt természetesen csak kétféle élettér közül választhattak: vagy a szárazföldön, vagy a vízben éltek. A repülő rovarok őse feltehetően az utóbbiak közé tartozott, s a rákokhoz hasonlóan az oxigén felvételt kopoltyúkon keresztül valósította meg. A kopoltyúk az állat testének majd minden szegmensén jelen lehettek, tollszerű kitüremkedések formájában, hasonlóan a kérészek lárváihoz. Ezek a kitüremkedések aztán fokozatosan egyre nagyobbak és szilárdabbak lettek, s végül alkalmasakká válhattak, hogy segítségükkel gazdájuk, egy már kevésbé a vízhez kötött életciklusa során vitorlázórepülőhöz hasonlóan irányítsa ugrását. Végül, az aktív repülés kialakulásával párhuzamosan ezek a kitüremkedések eltűntek a hátsó szelvényekről, mert néha a kevesebb több: amíg nagyon sok szárny nem képes jól irányítható repülésre, egy-két pár tökéletesen megfelel a célnak.

Egy kattintás ide a folytatáshoz….

Ízeltlábú test-evolúció – 1.

Ha szemügyre veszünk egy ezerlábút, talán az első dolog ami a szemünkbe ötlik, hogy teste ismétlődő egységekből (ún. szegmensekből) áll, amelyek mint megannyi egyforma „építőmodul” sorakoznak egymás mögött. Figyelmesebben szétnézve valami hasonlóra lelhetünk rákokban, rovarokban és más ízeltlábúakban is, sőt, mi magunk, gerincesek sem vagyunk kivételek az efajta modularitás alól, bár esetünkben az ismétlődő egységeket leginkább csak az embrionális fejlődés során lehet könnyen elkülöníteni. S ugyan fontos hangsúlyozni, hogy utóbbi állatcsoportokban, az ezerlábúak szegmenseitől eltérően, az „építőmodulok” nem tökéletesen egyformák, mégis egyértelműnek tűnik, hogy amit látunk az egyfajta „variációk egy témára”, vagyis minden egység leszármaztatható egy szegmens-prototípusból. Ebből persze rögtön adódik a kérdés: milyen mechanizmusok felelősek az egyes szegmens-variánsok kialakulásáért? Egy kattintás ide a folytatáshoz….

Van pikóhal tüske nélkül

A tüskés pikó kutatás igazi reneszánszát éli, bár ezúttal a fősodorban nem a halak, egykor Niko Tinbergen érdeklődését is felkeltő viselkedése áll, hanem sokkal inkább a természetben fellelhető formagazdagságuk.

A háromtüskés pikó (Gasterosteus aculeatus) legnagyobb természetes populációi a tengerekben élnek, de a kis hal szívósságát mi sem bizonyítja jobban, mint hogy sikerrel megtelepedtek a legutóbbi jégkorszak végén visszavonuló gleccserek helyen kialakuló édesvízi tavakban is. (Az édesvíz és tengervíz ozmotikus tulajdonságai alapvetően különbözőek, ezért nem triviális egy ilyen váltás.) Ráadásul nem is egyszer, hanem nagyon sokszor: a Csendes- és Atlanti-óceán partjai egyaránt tele vannak egyedi tüskés pikó populációknak otthont adó tavakkal (sőt mára már a halnak sikerült elvergődnie Közép-Európába is).

Egy kattintás ide a folytatáshoz….

Szemtelenek – a mexikói barlangi vaklazac

Az evolúciót legjobban szemléltető fajokról alkotott szubjektív toplistámom, a galapagosi pintyek, a tüskés pikó és a nyírfaaraszoló lepkék mellett igen előkellő helyet foglal el egy mexikói lazacfaj is, az Astyanax mexicanus. (Kicsit offtopic kitérő: a nyírfaaraszolóról lehet elvétve olyan pletykákat hallani kreacionista berkekből, hogy valójában nem is szemléltetik jól az evolúciót, de nem kell felülni nekik: mint annyi másban, ebben is tévednek.)

Az Astyanax-nak alapvetően két populációja ismert: egyik a felszíni tavakban él és teljesen hétköznap kinézetű (ez “surface fish” néven szerepel majd az ábrákon), a másik pedig a Yucatán félszigetet alkotó mészkőben képződött barlangok tavaiban lakik, teste pigmentszegény és első pillantásra úgy tűnik, hogy teljesen vak, hiszen egyáltalán nincs is szeme (“cavefish”).

Egy kattintás ide a folytatáshoz….

Fagyos lett a szíve

Egyéb közös vonások felemlegetése mellett, a gerincesek általános jellemzésének egyik fontos pontja, hogy az ide tartozó állatoknak zárt keringési rendszerük van, amelyben vörösvérsejtekbe zárt hemoglobin szállítja az oxigént. Mint minden jó szabály alól, utóbbi esetében azért vannak kivételek. Az Antarktisz körül található vizekben elterjedt Notothenioidea alrendbe tartozó sügérek egyik családjába (Channichthyidae), az ún. jéghalak közé tartozó fajok esetében sem hemoglobinnal, sem vörösvérsejtekkel nem találkozunk. Annál szembeötlőbbek azonban azok az adaptációk, amelyek ezen hiány pótlását, illetve a hideg, sarki környezethez való alkalmazkodást teszik lehetővé ezen halak számára.

Egy kattintás ide a folytatáshoz….