Mi kell, hogy a ponty repüljön, mint a pinty?

Még valamikor a 19. sz. végén, a kor egyik legjelesebb brit zoológusa, D’Arcy Thompson azzal szórakoztatta karácsonykor gyerekeit, hogy egy gumilapra kutyafigurát rajzolt és azt különböző irányba húzogatva egyik kutyafajtából csinált egy másikat. Thompson kvintesszenciális viktoriánus tudós volt és zoológia mellett nagyon érdekelte a matematika és fizika is (meg történetesen a klasszikus görög irodalom) és a gumihúzogatás a gyerekek szórakoztatásán túl egy mélyebb tudományos gondolat fizikai megtestesülése is volt. Utóbbi szerint az egyes élőlények kinézetét (a biológiai anyag formáját) elsősorban fizikai erők alakítják.

Ezt az elméletet öntötte aztán 57 évesen könyvformába On Growth and Form” című művében, ami 1917-ben jelent meg és sokan máig a 20. század egyik legfontosabb biológiai témájú művének tartják. Pedig D’Arcy elsődleges szándéka, miszerint alternatívát kínáljon az öröklődés-alapú darwini evolúciós elméletnek, sosem kapott kellő támogatást. És mégis kellő mennyiségű érdekes gondolat került bele a műbe, hogy számos egymást követő kutatói generációt volt képes inspirálni. (Akit érdekelnek Thompson életének egyéb részletei, annak mindenképpen ajánlom Stephen Wolfram igazi fanboy-lelkesedéssel megírt hosszú írását.)

D’Arcy Thompson és az “On Growth and Form” híres hal-transzformációi. (Forrás: Stephen Wolfram – Writings)

A karácsonyi gumikutyák logikája az “On Growth and Form” utolsó előtti fejezetében köszön aztán vissza, de itt (elsősorban) nem kutyákat, hanem halakat találunk. És ezek, a fent is látható rajzok lettek később a legikonikusabbak D’Arcy Thompson főművéből.

Mert bár az öröklődés fogja végső soron a testek alakját formálni, de azt nagyon jól ismerte fel Thompson, hogy bizonyos testrészek evolúciós átalakulása felfogható mint egy koordinátarendszer-torzuláshoz vezető növekedésbeli változás. Ezeknek pedig mind biológiai (genetikai) oka van, legyen az mondjuk a tacskók rövid lába, vagy a zsiráfok hosszú nyaka.

A halak esetében tényleg rengeteg ilyen típusú “transzformációt” figyelhetünk meg (persze nem teljesen véletlenül, hiszen a gerinces fajok fele az hal), és talán az egyik legérdekesebb közülük a repülőhalak mellúszójának esete.

Amiben egy tipikus repülőhal igazán különleges, az mellúszójának a mérete, amely egyben azt a relatíve nagy felületet is biztosítani tudja, ami ezeknek a fajoknak a siklórepüléséhez szükséges (és egy ilyen siklás akár 400 m hosszan is tarthat, miközben a magasságukat és a siklás irányát is szabályozzák). Hogy mi lehet ennek a megnagyobbodott mellúszónak az eredete, annak eredt a nyomába a Harvardon dolgozó Matthew Harris csoportja.

(A) Egy tipikus repülőhalnak feltűnően megnyúlt mell- és hasúszói vannak (fekete és fehér nyílhegy), valamint a farokúszójuk alsó sugarai is megnyúltak (szürke nyílhegy). (B) Rokon csoportokkal is összevetve, a teljes testhosszhoz képest kifejezetten feltűnő a mellúszók megnagyobbodása. (Forrás: bioRxiv)

Az egyelőre csak preprint formájában elérhető kutatásban Harris-ék a repülőhalakat is magukba foglaló Beloniformes (magyarul Makrahalalakúak) rend 35 különböző fajának a fehérjekódoló, illetve konzervált, de nem kódoló szekvenciáját határozták meg. (Durva közelítéssel ezek a lényegi részei a genomnak, persze azért ez itt egy szükséges egyszerűsítés, ami ahhoz volt szükséges, hogy ennyi fajra költséghatékonyan meg lehessen oldani a szekvenálást.) Ezek segítségével meg lehetett becsülni, hogy milyen folyamatokhoz kapcsolódóak azok a fehérjekódoló gének, amelyek (feltehetőleg az adaptáció miatt) gyorsabban evolválódtak a repülőhalakban.

A gyorsan változó gének közt vannak olyanok, amelyek mondjuk az egyensúlyért felelős vesztibuláris rendszerhez kapcsolhatók, egyes izomfejlődésben fontos gének és számos olyan gén is, amelyet ilyen-olyan módon, más fajokban korábban már az uszony/végtag fejlődéséhez kapcsoltak. Ezek azok a gének, amelyeket jelen tudásunk alapján várnánk is, hogy változzanak, de persze egy ilyen összevetésben kijönnek olyan találatok is, amelyek általánosabb funkciót betöltő fehérjék és amelyek kevésbé “gyanúsak” egy ilyen esetben. Itt vannak például kálium-csatornákat (kcnk5a, kcnk9), vagy aminosav-transzportban fontos fehérjéket kódoló gének (lat4a, lat4b), amelyeket egy tipikus genomikai elemzésben még 4-5 évvel ezelőtt is a “futottak még” kategóriába soroltak. És ez az a pont ahol Harrisék csoportja szerencsére a genomikát egy jó adag (zebrahal)genetikával keverte össze, amitől igazán érdekes lett a történet.

A longfin (lof) mutánsokban egy domináns mutáció a kcnh2a gén érintette, ezért a revertáns allélok (R) esetében a fenotípus eltűnik. A lat4a esetében a domináns nr21 allél rövidebb úszókat eredményez. (Forrás: bioRxiv)

Harris korábban a Nobel-díjas Christiane Nüsslein-Volhard egyik nagyon sikeres poszt-dokja volt és maga is részt vett abban a genetikai screen-ben, ahol olyan mutációkat kerestek, amelyek a felnőtt állatoknak változtatják meg valamiképpen a külalakját – mintázatát, pikkelyzetét, vázrendszerét, vagy épp az úszók méretét. Ez tipikusan olyan projekt volt, amihez egyrészt szükséges volt az a támogatás, amit egy Nobel díjas biztosítani tud, másrészt logikusan következett Nüsslein-Volhard (vagy, ahogy mindenki ismeri, Yani) korábbi munkáiból. Nobel díját Yani még azért a fantasztikus munkákért kapta, amit Eric Wieschaus-al együtt a korai muslica embriók fejlődésében szerepet játszó gének feltérképezése során végeztek (és ami az alapja minden fejlődésgenetika kurzusnak), majd ezután lényegében ugyanezt a munkát kiterjesztette zebrahal embriókra is. Ez volt ebben a fajban az egyik első komolyabb genetikai screen és egyben az egyik kulcsmomentum abból a szempontból is, hogy a George Streisinger által megálmodott modellszervezet valóban be tudott futni. De míg az embrionális genetikai screenek (főleg, ha muslicáról van szó), viszonylag gyorsak, addig ebben a legutóbbi kísérletsorozatban hónapokat, ha nem éveket kellett várni, amíg egyáltalán kiderült, hogy valóban új fenotípussal álunk szemben. Ebben a munkában játszott aztán fontos szerepet Harris.

Persze ekkor nem csak új mutánsokat kerestek, hanem a korábbi screenekből származó mutációkat is igyekeztek feltérképezni, így például azt is megérteni, hogy a nagyon eredetien longfin (lof) és another longfin (alf) névre keresztelt mutánsok, amelyek a nevüknek megfelelően meghosszabbodott úszókkal dicsekedhettek, milyen mutációknak köszönhetik létüket.

Az eredmény meglepő volt, hiszen ahogy először az alf esetében, majd később a lof-nál is kiderült, hogy a nagyobb úszóméretért kálium csatornák felelősek (előbbinél kcnk5b, utóbbinál pedig kcnh2a érintett). Mivel ezeket a csatornákat leginkább az idegrendszerben betöltött szerepük miatt tanulmányozták korábban, meglehetősen váratlan volt hogy megnövekedett expressziójuk eredményeképpen megnövekedett úszókat kaphatunk és egyben rávilágított, hogy a bioelektromos jelátvitel még sok más szövetben játszhat fontos szerepet.

(A) A kcnh2a és lat4a mutánsok kombinálásával létrehozható a “repülőhal” fenotípus, amit elnyúlt mellúszó (B), de rövid dorzális farokúszó (C) jellemez. (Forrás: bioRxiv)

Harris csoportja is a kcnh2alof mutációból indult ki (ők maguk is feltérképezték a mutáció helyét), hiszen ezek az úszók hasonlítanak leginkább a repülőhalak megnövekedett úszóira. Ugyanakkor a lof halakban a farokúszó mindkét része is megnyúlt ez pedig a repülőhalaknál nincs így. Ezért egy ellentétes hatású mutációt kerestek, egy olyant, aminek következtében rövidebbek lesznek az úszók és végül a nem túl fantáziadús nr21 “személyében” akadtak egy ilyen fenotípust okozó, domináns mutációra.

Az nr21 esetében a mutáció a lat4a génbe esett (itt is egy expressziót növelő, funkció-nyeréses mutációról van szó) és itt már érthető is, hogy miért ér össze a repülőhalak és a fura uszonyú zebrahal-mutánsok története, hiszen, ahogy fentebb írtam pont ilyen típusú gének mentek keresztól felgyorsult evolúción a repülőhalak genomjában.

Persze, ha van egy mutációnk, ami hosszabb úszókat hoz létre és egy másik, ami meg rövidebbet, adja magát a kérdés, hogy mi lesz, ha a kettőt összehozzuk? Harrisék megtették ezt és az eredmény pont azért izgalmas, mert kinézetében az így létrejövő kettős mutáns zebrahal (lat4anr21/+;kcnh2alof/+) eléggé hozza a repülőhalak “formáját”: elnyúlt mellúszókkal és felemás farokúszóval (felül rövid, alul hosszú) rendelkezik. Azaz két lépésben magunk is le tudtuk másolni a repülőhalak evolúciójának a talán leglátványosabb, thompsoni értelemben transzformációs lépését. (Természetesen mindez még nem elég a “repülőhalsághoz” és ezek a zebrahalak sosem fognak repülni. Ahhoz még számos más élettani és viselkedésbeli változásra lenne szükség.)

Bármennyire látványos is (és gumilapra kívánkozó) transzformáció, az “On Growth and Form”-ból sajnos pont a repülőhalak úszója hiányzik. De ez nem azért van, mert D’Arcy Thompsont esetleg nem érdekelték volna ezek a halak. A görög irodalomban nagyon is otthon levő Thompson maga fordította angolra Arisztotelész “Az állatok története” című művét, amiben a repülőhalak egyik első említése is található és ez kerülhetett be később, az “On Growth and Form” után három évtizeddel publikált Glossary of Greek Fishes” című könyvbe is, amiben Thompson a klasszikus görög irodalomban említés szintén megjelenő halakat próbálta beazonosítani.

(A borítókép a Flickr-ről származik.)


Daane JM, Blum N, Lanni J, Boldt H, Iovine MK et al. (2021) Novel regulators of growth identified in the evolution of fin proportion in flying fish. bioRxiv 2021.03.05.434157; doi: 10.1101/2021.03.05.434157.

F.J. van Eeden, M. Granato, U. Schach, M. Brand, M. Furutani-Seiki, et al. (1996) Genetic analysis of fin formation in the zebrafish, Danio rerio. Development 123: 255-262.

Nüsslein-Volhard C. (2012) The zebrafish issue of Development. Development 139: 4099-4103 doi: 10.1242/dev.085217.

Perathoner S, Daane JM, Henrion U, Seebohm G, Higdon CW, Johnson SL, et al. (2014) Bioelectric Signaling Regulates Size in Zebrafish Fins. PLoS Genet 10(1): e1004080. doi: 10.1371/journal.pgen.1004080.

Stewart S, Le Bleu HK, Yette GA, Henner AL, Robbins AE, et al. (2021) longfin causes cis-ectopic expression of the kcnh2a ether-a-go-go K+ channel to autonomously prolong fin outgrowth. bioRxiv 790329; doi: 10.1101/790329.

Szelvényesen

Ha szelvényes állatok kerülnek szóba, akkor elsőre legtöbben jó eséllyel az ízeltlábúakra gondolnak majd. Nem véletlenül persze, hiszen egy százlábún, vagy egy folyami rákon nem lehet nem észrevenni a jól kifejlett, kvázi ismétlődő egységetket, szaknevükön szegmenseket. Pedig, az az igazság, hogy saját közelebbi rokonságunk is szelvényezett, s ha ezt nehéz lenne elképzelni, gondoljunk csak a “gerincesek” névadó szervére. Egy emberi gerincoszlop számos (egész pontosan 24), hasonló felépítésű egységből épül fel: 7 nyaki, 12 háti és 5 ágyéki csigolyából (meg persze még van az 5, ill. 4-6 csigolya összeforrásából létrejövő keresztcsont és farokcsont, de ezek épp keletkezésük miatt – emberben – álcsigolyának számítanak). A háti csigolyák esetében, a hozzájuk kapcsolódó bordák révén a “szelvényesség” talán még evidensebb, de valószínűleg azért senkit nem kell külön meggyőzni, hogy egy nyaki- és ágyéki csigolya valójában “variáció egy témára”.

A gerinces szelvényesség abszolút bajnokai értelemszerűen a kígyók, akik a maguk 300+ csigolyájával egész nagyságrendet vernek az emlősökre, halakra és madarakra, és még a kétéltűek és más üllők között is alig lelünk valakit, aki egyáltalán a közelükbe érhetne. A kígyók testalkata alapján a naiv szemlélő azt is hihetné, hogy ez az extrém csigolyaszám a farok megnyúlásának köszönhető, de a “józan paraszti ész” ezúttal tévútra vinne. Ugyan a siklók és társaik szépszámú (kb. 70) farokcsigolyával büszkélkedhetnek, a csigolyák elsöprő többsége a háthoz tartozik. Ennek megfelelően mindegyiken egy-egy pár borda díszeleg, s csak azok után lelhetjük fel a hátsó végag csökevényeit, már ahol még ezek kivehetőek – lásd boák (de pl. fosszilis kígyókban azért elég egyértelműek). Elsőre talán egy kicsit paradox módon, nyakcsigolyából mindössze három van, de ennek az oka pont abban keresendő, hogy bizonyos korai fejlődési mintázatok úgy változtak meg, hogy a kígyók mellső végtagjai nem is kezdenek kialakulni.

Ha a csigolya-, pontosabban szegmens szám növekedés nyomába akarunk eredni, akkor a kígyók egyedfejlődésének egész korai stádiumához kell visszamennünk, pontosan addig, amíg ezek a szegmensek el nem kezdenek kialakulni. A csigolyák és a hozzájuk tapadó izmok szomitának nevezett mezodermális eredetű szövetblokkokból jönnek létre, és a szelvényességük későbbi titka abban keresendő, hogy már maguk a szomiták is szegmentáltak. A szomiták kialakulásának (vagyis a szomatogenezisnek) kezdetén egy kígyó embrió nem nagyon különbözik a többi gerincestől. Csak ezután válik fokozatosan evidenssé a különbség, ui. míg a legtöbb gerincesnél néhány tucat tucat szomita kialakulása után a folyamat leáll, a kígyók szelvényei csak egyre keletkeznek. Hogy megértsük, ennek mi is az oka, ahhoz először tisztázni kell, hogy pontosan mi is zajlik egy gerincesben a szomatogenezis során.

Ehhez pedig a zebrahalakat fogjuk használni, részint mert így rámnyomható a szakmai sovinizmus bélyege, részint pedig azért, mert ez a szomatogenezis szempontjából az egyik legjobban jellemzett modelállat. A halak szomitái a fejlődés 11. órájának környékén kezdenek kialakulni és ezután tempósan, jól megjósolható félórás iődközönként keletkezik egy-egy újabb szegmens, míg ki nem alakul mind a 31. A szomiták száma annyira jellemző az embriogenezis ezen szakaszában a halak fejlődésére, hogy az egyes fejlődési stádiumokat a számuk alapján nevezték el (lásd alábbi ábra).

A szomitogenezis mindig az elülső (fejhez legközelebbi) szegmens kialakulásával indul, a többi pedig fokozatosan adódik hozzá. Mindeközben a szomiták, ill. az embrió farki vége között egy differenciálatlan, és méretében egyre csökkenő szövetdarabot figyelhetünk meg. Ez szaknyelven a poszt-szomitikus mesoderma (post somitic mesoderm – PSM) és az itt lelhető sejtekben játszódnak le mindazok a folyamatok, amelyek nélkül nem jöhetnek létre a szomiták.

Mielőtt azonban beleásnánk magunkat a PSM molekuláris rejtelmeibe, egy kis kitérőt teszek, hogy nagyvonalakban felvázoljam, miként tanulmányoznak a biológusok egy olyan komplex folyamatot mint a szomatogenezis.

A legelső gond gyakran az, hogy nem is igen tudjuk, hogyan kezdjünk a jelenség leírásához: nem ismert semmi a folyamatról, fogalmunk sincs, milyen gének szerepelnek benne. A problémát kiküszöbölendő, olyan mutánsokat kezdünk keresni, amelyekben a vizsgált folyamat hibásan zajlik le. Szerencsére (ebből a szempontból…) ma már nagyszámú kémiai mutagén ismert, s így nem kell csak a természetre hagyatkozzunk (mivel nagyon sok mutáció eleve lehetetlenné teszi, hogy hordozója elérje az ivarérett kort, ez kifejezetten szerencse is). A folyamat viszonylag egyszerű: egy halat pár napig mutagén fürdőben tartunk, így az ez idő alatt kialakuló ivarsejtjei közt számos olyan lesz, amely mutációt hordoz. A következő lépésben aztán a hal utódjai közül kiszűrjük azokat, amelyekben az általunk vizsgált folyamat gallyra ment és egy kis vidám genetikai térképezés után, máris “kezünkben lesz” a jelenségben ludas gén.

Zebrahalakban az első nagy mutagenezis screeneket (mert ez a fent körülírt tevékenység hivatalos neve) még a kilencvenes évek közepén ejtették meg és már ekkor számos olyan mutánst leltek, ahol a szomatogenezissel kisebb-nagyobb gondok adódtak. A mellékelt ábrán lehet néhány ilyent látni (wt = normális, “vad” típus; fss = fused somites; bea = beamter; des = deadly seven), s ezek közül sokról (pl. bea és des) kiderült, hogy ugyanannak a jelátviteli útvonalnak, a Notch-Delta szignáltranszdukciós folyamatnak a résztvevői.

Ez az útvonal egyébként a gerincesekben univerzálisan fontos szereppel bír a szegmentáció kialakulásában (a mikéntről lásd egy picit alább). Mi sem mutatja ezt talán jobban, mint hogy számos olyan emberi betegség esetében, ahol az egyik tünet a gerincoszlop abnormális alakjában nyilvánul meg, a hibás génről kiderült, hogy valamit a Notch útvonallal kavar.

A jobboldali ábra C paneljén látható beteg esetében (A-n a gerincoszlop ágyékövi részének vázlata látszik egészséges emberben, B-n ugyanez egy röntgenfelvételen) a delta-like 3 gén mutációja okozta az elváltozást.

Mindezen kis kitérő után akkor végre lássuk, hogy mi is folyik a PSM “boszorkánykonyhájában”. Még a molekuláris fejlődésbiológia ’80-as években kezdődő forradalmi változásai előtt számos elmélet született,
megmagyarázandó, mi is zajlik szomitogenezis közben. Az igazsághoz legközelebb Jonathan Cooke és Christopher Zeeman jutottak, akik egy 1976-os cikkükben vázolták fel az “óra és hullámfront” (“clock-and-wavefront”) modellt (hogy ez pontosan mi is, az remélhetőleg kiderül a következő bekezdésekből). A modell valós életben való relevanciájának bizonyításában elévülhetetlen érdemeket szerzett, a poszt apropójaként szolgáló kígyós cikket is jegyző, Olivier Pourquié.

Pourquié és kutatócsoportja számos olyan gént izolált, amelyek igen dinamikus fejeződnek ki a PSM-ben. Egy szomita-képződési ciklus alatt (ami, mint írtam zebrahalakban kb. félóra, de más fajokban lehet egy-, vagy másfél óra is, attól függően milyen a szóbanforgó élőlény átlagos növekedési sebessége) ezek a gének előbb a PSM leghátsó, farok körüli részén expresszálódnak, majd fokozatosan egyre előrébb levő sejtekben – miközben a hátsó sejtekben megszűnik a gén kifejeződése -, mígnem a már kialakult szomiták alatti sejtekben elhal a “hullám”. A ciklus ezután újra indul, ám ezen utóbbi sejtek már nem vesznek részt benne, mert belőlük lesz az új “legutolsó” szomitapár.

A folyamat értelmezéséhez fontos kiemelni, hogy itt nem sejtek vándorolnak, hanem csak egy gén kifejeződése fut végig egy sejthalmazon. Ha lebontjuk a jelenséget az egyes sejtek szintjére, akkor már nem egy “hullámmal” állunk szemben: arról van szó, hogy egy-egy sejt bizonyos periodicitással elkezdi kifejezni a szóbanforgó géneket, majd kikapcsolja azokat. Hogy a rendszer flottul működjön (és a szövet szintjén a “hullámot” produkálja), ahhoz két dolog elengedhetetlen: legyen a sejteknek valami belső órája, egy ún. oszcillátora, ami ezt a periodicitást képes produkálni, illetve a szomszédos sejtek valamiképpen kommunikálni tudják egymással, hogy a ciklus melyik szakaszában vannak – hiszen ha minden sejt a maga feje után pörög, akkor abból előbb-utóbb káosz lesz és nem egy szabályos hullámfront.

A molekuláris óra mibenléte még nem teljesen tisztázott, de a legtöbben arra teszik a pénzüket, hogy egy egyszerű negatív-feedback ciklusról van szó: az óra gén-ről (amit csak a példa kedvéért hívunk így, mert nem tudjuk pontosan mi ez) átíródik a megfelelő RNS, majd erről elkészül az ÓRA fehérje, ami kikapcsolja saját génjének működését. Így azonban persze nem keletkezik több ÓRA fehérje, a sejt természetes belső mechanizusai pedig adott időn belül elbontják a már meglevő ÓRA fehérjéket (ezt nevezzük fehérje turnover-nek), így előbb utóbb a gén felszabadul a gátlás alól. És kezdődik minden elölről. Ha a fehérje átíródás és lebomlás megfelelő ütemben zajlik, már meg is van a kívánt periodicitás. (Az ínyencek kedvéért: az óra gén szerepre leggyakrabban a hes1 és hes7 géneket jelölik.)

A sejtek összehangolásáról már többet tudunk – itt kerül a képbe a korábban emlegetett Notch -Delta jelátvitel. Szomszédos sejtek ezen útvonal segítségével hangolják össze egymás belső ciklusát, így persze érthetővé válik, hogy mi is okozta a mutánsok fura kinézetét: fejlődésük során az egységesítés hiányában a belső ciklusok lassan elállítódtak, a hullámfront egyre szabálytalanabbá vált, a kialakuló szomiták meg egyre kuszábbakká.

A PSM sejtjeinek belső órája mindaddig ketyeg, amíg a már kialakult szomiták nagyon közel nem kerülnek az embrió hátsó részéhez (ahonnan a hullám indul). Ekkor, feltehetőleg az “érett” szomitákból kibocsájtott retinolsav (retinoic acid – RA) ellensúlyozza a PSM sejtjeinek korábbi állapotát biztosító FGF- és Wnt jelátviteli rendszerek aktivitását, és a belső oszcillátorok kikapcsolnak.

Na, akkor mindezeket tisztázva már csak tényleg arra kellene válaszolni, hogy mi is történik a kígyókban. A rendszer logikájából látható, hogy alapvetően két út kínálkozik a szomiták számának megnövelésére: vagy a PSM méretét növeljük meg (pl. több sejtosztódással), hogy több szomitára elegendő sejt legyen benne, vagy pedig az órát turbózzuk fel, hogy gyorsabban “ketyegjen”.

A kígyók a két megoldás ötvözetét használják, bár a hangsúly az nagyon is az utóbbin van. A csirkék 16 és az egerek 13 db. sejtosztódásával szemben a kígyó PSM 21 sejtosztódáson megy keresztül. Szignifikáns különbség, de koránt sem akkora, hogy a nagyságrendnyi különbségért felelős lehessen. Sokkal inkább alkalmas erre a négyszer gyorsabban ketyegő sejtóra. Ez természetesen négyszer gyorsabb hullámokat idéz elő, amelyek így, egységnyi fejlődési idő alatt (vagyis más szervek fejlődéséhez viszonyítva), négyszer annyi szomitát hoznak létre, mint a rövid testű gerincesek, pl. zebrahalak – bár így a szomiták mérete lesz kezdetben kicsi.

Hogy mindennek mi a közvetlen genetikai oka, azt még nem tudjuk. Ugyanakkor érdekes látni, hogy a végtegfejlődés modulja mellett, a kígyók esetében az evolúció egy másik fejlődési modullal is vidáman (és eredményesen) “kísérletezgetett”.



Gomez C, Ozbudak EM, Wunderlich J, Baumann D, Lewis J, Pourquié O (2008) Control of segment number in vertebrate embryos. Nature 454: 335-339.
Vonk FJ, Richardson MK (2008) Developmental biology: Serpent clocks tick faster. Nature 454: 282-283.
Dequéant ML, Pourquié O (2008) Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet 9(5): 370-382.
Saga Y, Takeda H (2001) The making of the somite: molecular events in vertebrate segmentation. Nat Rev Genet 2(11): 835-845.
van Eeden FJ, Granato M, Schach U, Brand M, Furutani-Seiki M, et al. (1996) Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. Development 123: 153-64.
Whittock NV, Ellard S, Duncan J, de Die-Smulders CE, Vles JS, Turnpenny PD (2004) Pseudodominant inheritance of spondylocostal dysostosis type 1 caused by two familial delta-like 3 mutations. Clin Genet 66(1): 67-72.