Titokzatos bordásmedúzák – 3.

Pleurobrachia-phyl.jpgAlig fél évvel ezelőtt írtam az első megszekvenált bordásmedúzafakról (Mnemiopsis leidyi) és már ki is jött egy másik genom-jellemzés: ezúttal a Csendes-óceáni egres (Pleurobrachia bachei) genomjának vázlata került publikálásra és vele együtt további tíz bordásmedúzafaj transzkriptómájának (ami a kifejezett génjeinek összessége)  a jellemzése.

Ezek egyrészt megerősítik a korábbi posztban foglaltakat a bordásmedúzák különleges rendszertani helyéről (a komplexebb állatok legősibb testvércsoportjának tűnnek), a Hox-gének és mikro-RNS-ek hiányáról, az izmok és és az idegrendszer különleges eredetéről ebben a csoportban, ráadásul utóbbi esetében egész érdekes új plussz információkat adnak.

Egy kattintás ide a folytatáshoz….

Titokzatos bordásmedúzák – 2.

ctenophore_phlogeny.jpgA pár héttel ezelőtti kommentárokat olvasva azt is hihettük volna, hogy a bordásmedúzák evolúciós ősiségének felismerése újkeletű reveláció. Pedig olyannyira nem, hogy már öt és fél évvel ezelőtt mi is írtunk arról, hogy a rendszertant ideje egy kicsit átszerkeszteni, mégsem a szivacsok lehetnek a legősibb többsejtű állatok. 

Az új tanulmány a korábbi megfigyeléseket annyiban egészíti ki, hogy több bordásmedúzafaj még több génjét vizsgálták, vagyis ha maradtak is korábbról kétkedők, azok is lassan kielégítő választ kaphatnak kérdéseikre.

Egy kattintás ide a folytatáshoz….

A lándzsahal genom

Ha egyszer majd valaki veszi a fáradtságot, hogy összeállítsa, a legfélrevezetőbb magyar állatnevek listáját, a lándzsahal mindenképpen előkellő helyre fog befutni. Ugyanis ez a kis állat nem hal, de mégcsak nem is gerinces. Ettől persze a hasonlóság még valós, de közel sem annyira szoros rokonságot takar (mint látni fogjuk, sőt), mint azt a nevezéktan sugallja.

A lándzsahal, vagy régiesebb nevén amphioxus, ugyanis a fejgerinchúrosok (Cephalochordata) közé tartozik. Ezek az állatok néhány nagyon fontos közös jellegben osztoznak, a saját magunk által is tarkított gerincesekkel, különösen az embrionális jellegeket tekintve. Ilyenek a kopoltyúívek, a test felső/hátsó oldalán végigfutó központi idegrendszer, és az alatta megtalálható pálcika-szerű gerinchúr. Persze legalább annyira fontosak a különbségek is, pl. a jól fejlett fej, porcok és csontok ill. végtagok teljes hiánya (hogy csak a legszembetűnőbbeket említsem), de igazából a poszt szempontjából ez egy kicsit mellékvágány, így elegánsan eltekintünk további boncolgatásuktól.

Egy kattintás ide a folytatáshoz….

Titokzatos bordásmedúzák

A bordás- (vagy fésűs) medúzákat, vagyis a Ctenophora törzs képviselőit, mint azt a nevük is mutatja, hosszabb ideje többé kevésbé a medúza- és polipéletformával egyaránt rendelkező csalánozókkal (Cnidaria) vették egy kalap alá.

Pedig a hasonlóság tényleg leginkább csak felületetes: mindkét csoport tagjait áttetsző, látszólag körkörös szimmetriájú test jellemzi, na és a standard három csíralemezből is csak kettő (endo- és ectoderma) lelhető fel minden kétséget kizárólag. A kulcsjegynek számító csalánsejtek (amiről a csalánozók a nevüket is kapták) viszont a bordásmedúzákból hiányoznak, helyettük ragadós, ún. colloblaszt sejtekkel ragadják meg mikroszkópikus prédáikat.

Mivel a ctenophorák testében valódi izmok is felfedezhetőek (ami miatt jópár kutató szerint valójában itt kialakul a harmadik csíralemez, a mezoderma is, amelyből a legtöbb “felsőbbrendű” állatban az izmok származnak), sokak hajlamosak (voltak) a kétoldali szimmetriával rendelkező állatokhoz (Bilateria) közelebb sorolni őket. Ezzel viszont az legnagyobb probléma, hogy már a korai – és hiányos – molekuláris rendszerezési adatok sem támasztották alá.

Szóval ilyen és ehhez hasonló vitatottabb rendszertani problémák megoldására a közelmúltban néhány kutató nekiült egy minden eddiginél részletesebb rendszertani fát gründoljon genomi DNS szekvenciák alapján (klikk az alábbi ábrára). Huszonegy állattörzs képviselőit vették górcső alá (ebből tizenegy (!!) eddig nem szerepelt ilyen típusú vizsgálatban), és masszív, majd negyven megabázisnyi szekvenciát használtak. Az eredmények sok szempontból érdekesek, bár legtöbb esetben ma már nem teljesen váratlanok. Egyrészt igazolást nyert, hogy a klasszikus testüreg kialakulása szerinti felosztás (Acoelomata, Pseudocoelomata, Eucoelomata) teljesen tarthatatlan. Helyette a leendő végbélnyílás eredete szerint megkülönböztethetünk ó- és újszájú állatokat (Protostomia és Deuterostomia), illetve előbbiek közt az igazán nagy különbség a lárvák típusa szerint van. Létezik az ún. Ecdysozoa csoport, amelybe az életük során vedlő fajok, pl. rovarok, rákok, pókok tartoznak, és a Lophotrochozoa csoport, amelybe mindefajta férgek és puhatestűek (csigák, oktopuszok, kagylók) esnek.

Bizonyossá vált továbbá az is, hogy a korábbi morfológiai bélyegeken alapuló fákkal ellentétben, az előgerinchúrosok közelebbi (bár sokban módosult) rokonai a gerinceseknek, mint a fejgerinchúrosok.

A legérdekesebb eredmény (értelemszerűen ;-)) a bordásmedúzákhoz kapcsolódik: az új fa szerint ezek még a szivacsoknál is távolabbi unokatestvérei minden más állatnak! Ha ez valóban így van (és még néhány megabázisnyi szekvencia, plusz négy-öt újabb faj vizsgálata ezt hamarosan eldöntheti), az jópár fogas kérdést vet fel, hiszen a bordásmedúzák testfelépítése komplexebb, mint a szivacsoké, amelyekből valódi szövetek is hiányoznak. Lehetséges, hogy a szivacsok “primitívsége” ugyanúgy másodlagos redukció eredménye, mint a parazita férgeké? Vagy a bordásmedúzák a többi állattól némileg függetlenül hozták létre a saját testfelépítésüket? (Vagy, és azért még ne zárjuk ki, a ctenophorák genetikai anyaga gyors evolúción ment át és ez becsapta az ilyesmire egyébként ma már felkészített, filogenetikai fakészítő algoritmusokat?) Pontosabb képet csak úgy nyerhetünk, ha jobban megismerjük ezeknek a különleges lényeknek a biológiáját, így koránt sem lennék meglepődve, ha a következő hónapokban jópár labor sok energiát fektetne a bordásmedúzák fejlődési nüanszainak feltárásába.

(A bordásmedúza fényképe a JelliesZone-ról származik.)


Martindale MQ, Henry JQ. (1999) Intracellular fate mapping in a basal metazoan, the ctenophore Mnemiopsis leidyi, reveals the origins of mesoderm and the existence of indeterminate cell lineages. Dev Biol 214(2): 243-257.
Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, et al. (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452: 745-749.

Szinapszisok eredete

A (kémiai) szinapszis azon kevés biológiai fogalmak egyike, amely feltehetőleg mindenki számára valamilyen minimum homályos jelentéssel bír. A kifejezés azt a struktúrát takarja, amely két idegsejt (neuron) találkozásánál jön létre, és ahol az egyik (preszinaptikus) neuronból érkező elektromos jel kémiai jellé alakulva a sejtek közötti téren áthatol, majd stimulálja vagy gátolja a másik (posztszinaptikus) sejtet. Ahhoz, hogy a dolog működjön mind két sejt oldalán bonyolult molekuláris komplexekre van szükség: a preszinaptikus partnernél apró kis hólyagocskákban (vezikulákban) levő ingerületátvivő anyagok (neurotranszmitterek), amelyek az elektromos impulzus érkezésekor a sejtközti térbe ürülnek, majd a posztszinaptikus partner megfelelő receptoraihoz kötődve fejtik ki hatásukat. Itt (a “túloldalon”) egy mikroszkópos képeken sötét vonalként megjelenő struktúra kapcsolódik a receptorok sejten belüli részeihez. Ez posztszinaptikus denzitás néven fut a tudományos irodalomban, és mindazon fehérjék gyűjtőneve, amelyek itt elhelyezkedve és együttműködve, a neurotranszmitterek által közvetített jel feldolgozásáért felelősek.

Egy kattintás ide a folytatáshoz….

Eb-adta

Alig két napja írtam “emberiség leghosszabb ideje futó és leglátványosabb eredményeket produkáló genetikai kísérletének” tartható kutyatenyésztésről (egyébként az a hosszú idő uszkve 15.000 év), és újból az ebekről kell írnom. Ez alkalommal azért mert egy olyan eszközt kaptunk a kezünkbe, amellyel még többet kihozhatunk négylábú barátainkból. Ez az eszköz nem más mint egy nagyfelbontású térképe a kutya-genomnak (egy kisebb felbontású verzió már 2003-ban kijött [1], ahhoz egy uszkár szolgáltatta az “alapanyagot”, a mostanihoz egy nőstény boxer), amit a Nature hasábjain közölt egy nemzetközi kutatócsoport [2].
Miért fontos ez? Leginkább azért mert sok kutyafaj annyira beltenyésztett, hogy ideális alanya lehet a legkülönbözőbb genetikai hátterű betegségek (narkolepszia, süketség, rák, stb.) tanulmányozásának. A genom térképpel a kezünkben pedig még könnyebben lehet a betegségek génjeit megtalálni, és pedig azért, mert (mint a cikkből kiderül) az egyes fajtákon belül az ún. haplotípus blokkok relatíve hosszúak, így viszonylag kevés genetikai marker felhasználásával is le lehetett szűkíteni a “gyanúsított” gének körét. (A haplotípus blokkok együtt szegregálódó, vagyis osztódáskor együtt öröklődő genetikai markerekre vonatkoznak. Genetikai térképezés szempontjából annál jobb, minnél hosszabbak, hiszen az együtt szegregálódás miatt egyetlen egy genetikai markerrel lehet jellemezni az adott régiót – így hosszú blokkok esetén kevesebb marker kell a teljes genom lefedéséhez. Normális (azaz nem tenyésztési) körülmények között, hosszú idő alatt, a sejtek meiotikus osztódásakor bekövetkező átkereszteződés (crossing-over) ezeket a haplotípus blokkokat feldarabolja a populációkban – pl. az összes kutyát és nem egyes fajtákat tekintve, a blokkok átlagos hossza kb. ua. mint bennünk, emberekben.)
Az egyéb érdekességek közül még két dolog melengeti meg egy fejlődésbiológus szívét: egyrészt, bár a kutyák genomjában kevesebb repetitív, nem kódoló szekvencia van, mint bennünk emberekben (emiatt genomjuk teljes hossza is lényegesen – kb 500 Mb-al – rövidebb), az egyik ugráló génjük (egy ragadozó specifikus Short INterspersed Element, vagy SINE) igen aktív és egyes betegségeket (például a már említett narkolepszia) az okozza, hogy egy-egy génnek a kódoló szekvenciájba ugrik. A másik pedig az, hogy a jelek szerint az emberi genom kb 5.3%-a igen erős konzerválódást mutat a kutyaéval összehasonlítva. Ez nem tűnik első hallásra soknak, de ha hozzá teszem, hogy az emberi genom csak mintegy 1.5-2%-a kódol fehérjéket, érdekesebb lesz. Ugyanis ez azt jelenti hogy számos olyan nem-kódoló DNS szakasz van, ami valójában nem nagyon változott, vagyis fontos funkciója lehet. (Ilyenekről már eddig is sokat tudtunk, de azért mindig jó egy kicsit újból meggyőződni – ráadásul ez súlyt ad annak az álláspontnak, hogy az evolúció nem elsősorban új gének létrehozásával “üzemel”, hanem a már meglévők szabályozásának változtatgatásával.) Sőt, ezen nem-kódoló, de konzervált DNS szakaszok fele a gének kb 1%-nak szabályozásáért felelős, pont olyanokért (láss csodát ;-)), amelyeknek az egyedfejlődésben van kulcsszerepük.


[1] Kirkness EF, Bafna V, Halpern AL, Levy S, Remington K, Rusch DB, Delcher AL, Pop M, Wang W, Fraser CM, Venter JC. (2003) The dog genome: survey sequencing and comparative analysis. Science 301: 1898-903.
[2] Kerstin Lindblad-Toh, Claire M Wade, Tarjei S. Mikkelsen, Elinor K. Karlsson, David B. Jaffe, Michael Kamal, Michele Clamp, Jean L. Chang, Edward J. Kulbokas, III, Michael C. Zody, Evan Mauceli, Xiaohui Xie, Matthew Breen, Robert K. Wayne, Elaine A. Ostrander, Chris P. Ponting, Francis Galibert, Douglas R. Smith, Pieter J. deJong, Ewen Kirkness, Pablo Alvarez, Tara Biagi, William Brockman, Jonathan Butler, Chee-Wye Chin, April Cook, James Cuff, Mark J. Daly, David DeCaprio, Sante Gnerre, Manfred Grabherr, Manolis Kellis, Michael Kleber, Carolyne Bardeleben, Leo Goodstadt, Andreas Heger, Christophe Hitte, Lisa Kim, Klaus-Peter Koepfli, Heidi G. Parker, John P. Pollinger, Stephen M. J. Searle, Nathan B. Sutter, Rachael Thomas and Caleb Webber, Broad Sequencing Platform members and Eric S. Lander (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog Nature 438: 803 – 819.